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Preface

The realm of particle physics is vast: multidisciplinary knowledge across several
domains of physics and mathematics is required to understand the reactions that
occur when particles collide and to master the functioning of the experiments built
to study these reactions: classical and quantum mechanics, special relativity,
electrodynamics, thermodynamics, chemistry, atomic and nuclear physics, quantum
field theory, electronics, analysis, geometry, group theory, probability, informatics,
among the others. Large-scale particle experiments, like those hosted in the main
laboratories around the world, are perhaps the best example of how multidisci-
plinary this field can become: the successful operation of these complex structures
relies on the synergetic work of hundreds of scientists and engineers; it is only the
combination of their individual expertise that makes it possible to cover all the
needs.

Thanks to the maturity of this field (more than one hundred years old!), a huge
collection of textbooks, topical schools, academic classes, and scientific literature is
available, where both the theoretical and experimental foundations of particle
physics can be elucidated to the desired level of detail. Yet, as for all the other
domains of physics, particle physics should be more about solving problems rather
than knowing concepts! The path towards a solid understanding of this discipline
passes through the capability of solving exercises. This book collects a sample of
about 240 solved problems about particle physics in general. About half of the
exercises are drawn from the public exams that have been proposed by the Italian
National Institute for Nuclear research (INFN) to select its scientific staff over the
last decade. Additional material inspired by my personal experience as an under-
graduate student at Scuola Normale Superiore di Pisa, researcher in the CMS
experiment, and teaching assistant at ETH Zürich complements the selection.
Throughout this book, the main emphasis is put on experimental problems,
although some more theoretical ones are also included. Thus, this book is mostly
addressed to experimentalists.

The proposed exercises span several subjects in particle physics, although I must
acknowledge that it has not been possible to be truly exhaustive. Several topics
have been unfortunately, yet necessarily, discarded or only marginally mentioned.
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In particular, cosmology, dark matter, beyond-standard model theories will not be
much discussed here. Also, a personal cultural bias towards an LHC-centric vision
of the field may have driven the focus towards the high-energy frontier at the
expenses of other equally lively sectors of research, like neutrino physics, rare
decays, hadron spectroscopy, B physics. Much attention is devoted to the opera-
tional principles of particle detectors, from the more classical ones to the more
recent technologies. Particle detectors cannot be understood without first mastering
the basics of the interaction between particles and matter, which therefore repre-
sents another topic of foremost interest. Given that particle detectors typically
provide electric outputs, which need to be processed, stored, and cleaned from the
noise, electronics, informatics, and data analysis enter naturally into the game, and a
basic knowledge of both subjects is therefore required. Furthermore, an experiment
in particle physics usually starts by scattering particles: acceleration of particles in
stable and repeatable beams is therefore another important topic. Finally, a proper
scientific maturity demands also an overall picture of the field: what is known, what
is still unknown but important to study, what are the technologies at hand, and what
the future lines of research. Several exercises go along this direction by discussing
the state of the art on the field, including ongoing or planned measurements and
new experimental techniques.

The exercises are grouped by subject into five chapters, where the main topic of
discussion is first introduced in an academic fashion. Within each chapter, the
exercises are organised as much as possible according to a logical order, so that
each exercise can be propaedeutic to those that follow. Some of the exercises are
used as prototypes for a class of problems. In this case, the relevant concepts and
the general-purpose formulas are derived once and recalled afterwards by pointing
to the master exercise. Other exercises are instead chosen to introduce a particular
topic, which is then explained in some more detail by dedicated mini-lectures.
References to the scientific literature and topical textbooks are then provided to help
the reader go into the various subjects in greater detail. Consistency of notation
throughout the text is pursued to reduce at a minimum the confusion introduced by
the abundance of acronyms and conventional symbols peculiar to this field. Some
exercises require a few lines of calculations, others one or more pages. Whenever
possible, one should always try to derive the symbolic solution analytically and
carry out the numerical computation without the help of pocket calculators, as to
train one's capability to handle simple calculations using approximations or
order-of-magnitude estimates. Indeed, experience teaches that there exist a few
constants and formulas that are really worth keeping in mind! In other situations,
one should better rely on computers rather than try the analytical approach. In the
latter case, examples of simple computer routines written in open-source pro-
gramming languages are also proposed.

Per aspera ad astra: solving problems is the most difficult and painful task for
students, but also one that unveils the true degree of comprehension of the subject.
We hope that this book can serve as supporting material to back up existing and
more complete textbooks on experimental and theoretical particle physics. At the
same time, it should provide a test bench for undergraduate students and young
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researchers to validate their level of preparation and hopefully stimulate their
curiosity on the field.

I am much indebted to INFN for allowing me to profit from a large number
of the exercises contained in this book. The richness and variety of topics covered
in this immense reservoir of knowledge have been fundamental to shape this work.
I also want to heartily thank the Institute for Particle Physics of ETH Zürich for
granting me the time to work on this book and for the fantastic teaching experience
I enjoyed amid its brilliant and lively students.

Pisa, Italy Lorenzo Bianchini
September 2017
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Chapter 1
Kinematics

Abstract The first chapter is dedicated to the kinematics of relativistic particles. The
starting point is the introduction of the Lorentz group through its representations.
Large emphasis then is given to the transformation properties of velocities and angles.
The centre-of-mass dynamics is studied in detail for two-to-two scattering and for
two- and three-body decays. The last part of the chapter is devoted to the concept of
cross section, which plays a central role in particle physics.

1.1 Lorentz Transformations

The set of space-time transformations under which the laws of physics are postu-
lated to be invariant form the so-calledPoincaré group: they comprise four space-time
translations, three spatial rotations, and three velocity transformations. Space rota-
tions and velocity transformations (the latter are often referred to as boosts) form the
sub-group of Lorentz transformations. Rotations are determined by the three usual
Euler angles,while boosts are determined by the three components of the velocity v of
the new reference frameR ′ as measured by an observed at rest in the initial reference
frameR, or, equivalently, by the dimensionless boost vector β = v/c. Rotations and
boosts change both the four-momentum and the spin vector of a particle. Since these
transformations form a group, it is possible to find a representation of each element
in terms of square matrices acting on vector spaces: the four-dimensional space of
four-vectors and the (2S + 1)-dimensional space of spin vectors for a particle of
spin S.

The space of four-vectors p = (p0, . . . , p3) in endowed with the Minkowski norm
defined by:

p2 ≡ pμpνgμν = p20 −
3∑

i=1

p2i , (1.1)

with gμν = diag(1,−1,−1,−1). By construction, the Lorentz transformations pre-
serve the Minkowski norm of Eq. (1.1). Any function of four-vectors that has the
same form in all reference frames related by a transformation of the Poincaré group
is called an invariant: the squared norm of Eq. (1.1) provides an example.

© Springer International Publishing AG 2018
L. Bianchini, Selected Exercises in Particle and Nuclear Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-70494-4_1
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2 1 Kinematics

The three-momentum of a particle can be embedded into a four-vector (E,p),
called four-momentum. For a particle of mass m, the four-momentum is subject to
the mass-shell constraint:

p2 − m2 = 0 ⇒ E = Ep ≡
√

|p|2 + m2. (1.2)

The velocity and gamma-factor of a particle are then defined as

βp ≡ |p|
Ep

, γp ≡ (1 − β2
p

)− 1
2 = Ep

m
(1.3)

In the four-momentum space, each Lorentz transformation is represented by a 4× 4
matrix which transforms p into a new four-momentum p′. The boost vector defines a
privileged direction in space, and indeed the transformation distinguishes between the
component parallel (‖) and orthogonal (⊥) to β. In terms of these two components,
the generic boost transformation is given by:

(
E′
p′

‖

)
=
(

γ −βγ

−βγ γ

)(
E
p‖

)
, p′

⊥ = p⊥ (1.4)

with β = |β| and γ = (1 − β)− 1
2 . Notice that γ is a function of β, although the

explicit dependence is often omitted in the calculations. The variables at the left-hand
side of Eq. (1.4) are the four-momenta components measured in the reference frame
R ′ that moves with velocity cβ with respect toR. This way of writing the transfor-
mation corresponds to the so-called passive transformation, as opposed to the active
transformation that changes the vector components in the same reference frame. The
generic boost can be also written in a compact vectorial form, see Problem 1.17. For
most of the applications it is however enough to remember the matrix version of
Eq. (1.4).

Given that γ 2 − (−βγ )2 = 1 and that γ ≥ 1, the first of Eq. (1.4) can be
equivalently written as:

(
E′
p′

‖

)
=
(

cosh α − sinh α

− sinh α cosh α

)(
E
p‖

)
(1.5)

with α = atanhβ. Were not for the imaginary “angle” α = iθ and the same-sign off-
diagonal elements, Eq. (1.5) would be the transformation of a normal vector under a
spatial rotation. The differences accounts for the fact that the transformation has to
preserve the Minkowski norm E2 − p2‖, and not the Euclidean norm E2 + p2‖, as done
by ordinary rotations.

Afinalword of caution:β and γ in Eq. (1.4) are the parameters of a transformation,
and should not be confused with the velocity and gamma-factor of a particle as
measured in a given reference frame: the suffix “p” in the latter thus reminds that
these quantities are different from the boost parameters. However, when no such
ambiguity can arise, the suffix can be safely dropped to simplify the notation.
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Problems

Problem 1.1 Express the MKS units [kg, m, s] in natural units. Using the results
thus obtained, write down the following quantities in natural units:

1. a cross section σ = 1 pb;
2. the decay rate of the φ meson 1/τ = 6.47 × 1021 s−1;
3. the electric charge e.

Discussion

Natural units are of the greatest help in simplifying the calculations. In natural units,
any dimensionful quantity is expressed in powers of the energy unit, taken to be
the eV or one of its multiple. The underlying idea is to trade off the usual MKS
units [kg, m, s] by the three dimensionful units [eV, �, c], and then to “silence” the
result with respect to � and c by setting them equal to unity. In order to convert the
result back into the MKS system, one needs to multiply the number obtained by a
factor �αcβ whereα andβ are chosen such that the overall dimension comes out right.

Solution

Remembering that m c2 is an energy, we can write:

kg c2 = kg (3 × 108 m s−1)2 = 9 × 1016 J = 9 × 1016

1.6 × 10−19
eV = 0.56 × 1036 eV,

kg = 0.56 × 1036 eV c−2 ⇒ kg = 0.56 × 1027 GeV. (1.6)

To convert the metre, it proves useful to remember the MKS value of the constant
� c:

� c = 197 MeV fm = 1.97 × 10−7 m eV,

m = 0.507 × 107 � c eV−1 ⇒ m = 0.507 × 1016 GeV−1. (1.7)

Finally, we can convert the second by simply using that:

c = 3 × 108 m s−1, s = 3 × 108

c
(0.507 × 107 � c eV−1)

s = 1.52 × 1015 � eV−1 ⇒ s = 1.52 × 1024 GeV−1. (1.8)

The inverse transformations into the MKS system laws are also very useful, since
a theoretical calculation performed in natural unitswill yield the result as a power
of GeV. In particular, one often needs to convert lengths, cross sections, and time
intervals into MKS:



4 1 Kinematics

[length] GeV−1 = 1.97 fm

[cross section] GeV−2 = 0.389 mbarn

[time] GeV−1 = 0.66 × 10−24 s

(1.9)

Let’s now apply the results above to the three cases of interest.

1. From Eq. (1.7) it follows that:

1 pb = 10−40 m2 = 10−40 (0.507 × 107 eV−1)2 = 0.26 × 10−8 GeV−2.

(1.10)

2. From Eq. (1.8) we have:

Γφ = 6.47 × 1021 s−1 = 6.47 × 1021 (1.52 × 1024)−1 GeV = 4.26 MeV.

(1.11)

3. From the definition of the fine structure in Heaviside–Lorentz units, such that the
first of Maxwell’s equation becomes ∇ · E = ρ and [e] = kg1/2 m s, we have:

e2

4π � c
≈ 1

137
⇒ e ≈

√
4π

137
= 0.303. (1.12)

Problem 1.2 Prove that the two measures d4p ≡ dE d3p and d3p/Ep, where (E,p)

form a four-vector and Ep = √|p|2 + m2, are invariant under a generic transforma-
tion of the Lorentz group.

Solution

Let’s consider first the d4p measure. As discussed in the introduction, the Lorentz
transformations preserves the Minkowski norm of Eq. (1.1). Then, for every four-
vector p and boost Λ it must hold:

(
pTΛT

)
g (Λp) = p′

μp′
νgμν = pμpνgμν = pT g p ⇒ ΛT g Λ = g. (1.13)

The last equation implies (detΛ)2 = 1. In particular, the proper Lorentz transforma-
tion are defined by the condition detΛ = +1, as it is the case for Eq. (1.4). Hence,
under a generic boost we have:

d4p′ = | detΛ| d4p = d4p, (1.14)

while under a space rotation, d3p′ = d3p and dE′ = dE, which proves that the
measure is indeed invariant under the Lorentz group.
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Let’s now consider the secondmeasure.Without loss of generality, we can assume
the x-axis to be aligned with the boost direction, so that:

d3p′

E′
p

= d
[
γ (px − βdEp)

]
dpy dpz

γ (Ep − βpx)
= γ (dpx − βpx/Ep dpx) dpy dpz

γ (Ep − βpx)
= d3p

Ep

(1.15)

Invariance under space rotation follows again from the fact that d3p′ = d3p and
E′
p = Ep. Alternatively, we canwrite thismeasure in away that ifmanifestly Lorentz-

invariant. Indeed:

Θ(Ep) δ(p2 − m2) d4p = d3p∣∣∣ ∂(p2−m2)

∂E

∣∣+Ep

∣∣∣
= d3p

2Ep
, (1.16)

where the Heaviside function Θ selects the positive root. Since the left-hand side of
Eq. (1.16) is manifestly Lorentz-invariant,1 such must be the right-hand side.

Problem 1.3 Prove that the scalar function:

I(p1, p2) =
√

(E2p1 − E1p2)2 − (p1 × p2)2 (1.17)

where pi = (Ei,pi) are a pair of four-vectors, is invariant under rotations and boosts.

Solution

The invariance of the right-hand side of Eq. (1.17) under rotations follows from
the fact that a rotation leaves unchanged both the 0th component of the four-vector
and the relative angle between the three-vectors. The invariance under boosts is less
trivial and has to be proved explicitly. The best way to do it is to find an equivalent
expression for I that is manifestly Lorentz-invariant. To this purpose, it is convenient
to take the square at both sides, obtaining:

I(p1, p2)
2 = (E1p2 − E2p1)2 − (p1 × p2)2 =

= E2
1 |p2|2 + E2

2 |p1|2 − 2E1E2p1 · p2 − |p1|2|p2|2 + (p1 · p2)2 =
= E2

1E2
2 − 2E1E2p1 · p2 + (p1 · p2)2︸ ︷︷ ︸

(p1p2)2

−E2
1p22 + E2

2 |p1|2 − |p1|2|p2|2 =

= (p1p2)
2 − (|p1|2 + p21)p

2
2 + (|p2|2 + p22)|p1|2 − |p1|2|p2|2 =

= (p1p2)
2 − p21p22. (1.18)

1It can be proved that the sign of the 0th component is also a Lorentz invariant.
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Since the left-hand side of Eq. (1.18) is invariant under boosts, so must be the
I(p1, p2). The special case p1 ∝ p2 gives rise to a simpler expression, where the
effect of a finite Lorentz transformation can be studied explicitly. By using the matrix
form of Eq. (1.5), we get:

I(p′
1, p′

2) = ∣∣E′
1p′

2 x − E′
2p′

1 x

∣∣ =
= |(cosh α E1 + sinh α p1 x)(sinh α E2 + cosh α p2 x)−
− (cosh α E2 + sinh α p2 x)(sinh α E1 + cosh α p1 x)|
= |(cosh2 α − sinh2 α)E1p2 x − (cosh2 α − sinh2 α)E2p2 x| =
= |E1p2 x − E2p1 x| = I(p1, p2). (1.19)

Discussion

When the four-vectors are specialised to be the current densities2 of two beams, i.e.:
ji = (ρi, ρivi), where ρi is a space density ([ρ] = m−3) and ρivi is a density flux
([ρv] = m−2s−1), then Eq. (1.17) becomes:

I(j1, j2) = ρ1ρ2

√(
β1 − β2

)2 − (β1 × β2

)2 ≡ ρ1ρ2vrel (1.20)

where β i are the particle velocities in units of c, and vrel is called relative velocity
between the two particles, although this is not a proper velocity (indeed, it can also
exceed c in some reference frames). The interpretation of vrel in terms of particle
velocities will be elucidated in Problem 1.11. The invariant I finds application in the
general formula of the cross section, see e.g. Eq. (1.293).

Problem 1.4 Prove the identity:

dpμ

dτ

dpμ

dτ
= −m2γ 6

[
β̇
2 − (β × β̇)2

]
, (1.21)

where p is the four-momentum of particle of mass m accelerated by external forces,
τ is the proper time of the particle, while the time derivatives and the velocities are
measured in a generic frame.

Solution

We first express the four-momentum components in terms of the particle velocity β,
namely:

2The fact that j is a Lorentz-vector can be proved by noticing that the continuity equation ∂tρ +
divxρv = 0 has to be invariant since it states the conservation of mass, which as to hold for any
frame. The latter can be written in covariant notation as ∂μjμ = 0, hence jμ has to transform as a
covariant vector since ∂μ is contravariant.
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p = (Ep,p) = (mγ, mγβ). (1.22)

Hence, we get:

dpμ

dτ

dpμ

dτ
=
(

dEp

dτ

)2

−
(

dp
dτ

)2

= m2γ 2

[(
dγ

dt

)2

−
(

d(γβ)

dt

)2
]

, (1.23)

where we have made use of the relation dt = γ dτ . By applying the chain rule for
the derivative of composite functions, we get:

(
dγ

dt

)2

= (γ 3β · β̇
)2 = γ 6 (β · β̇

)2
(1.24)

(
d(γβ)

dt

)2

= (γ̇β + γ β̇
)2 = γ 2

(
γ 2(β · β̇)β + β̇

)2 =

= γ 6
(
β · β̇

)2
β2 + 2γ 4

(
β · β̇

)2 + γ 2β̇
2 =

= γ 4(γ 2 − 1)
(
β · β̇

)2
β2 + 2γ 4

(
β · β̇

)2 + γ 2β̇
2 =

= γ 6 (β · β̇
)2 + γ 4 (β · β̇

)2 + γ 2β̇
2

(1.25)

Inserting these identities in Eq. (1.23), we obtain:

dpμ

dτ

dpμ

dτ
= −m2γ 4

[
γ 2
(
β · β̇

)2 + β̇
2
]

=
= −m2γ 6

[
β2β̇

2 − (β × β̇)2 + β̇
2
(1 − β2)

]
=

= −m2γ 6
[
β̇
2 − (β × β̇)2

]
, (1.26)

which proves the identity of Eq. (1.21). Since the left-hand side ismanifestly Lorentz-
invariant, so has to be the right-hand side.

Discussion

Equation (1.21) gives the Lieanard formula for the powerP emitted by a charged par-
ticle accelerated by an external force. Indeed, one can prove that P ∝ −e2(dp/dτ)2,
where e is the electric charge of the particle [1].

Problem 1.5 Work out a heuristic representation of the boost generatorsK in dimen-
sion d = 2 starting from the finite boost transformation of Eq. (1.5).

Solution

Let’s denote by (χ1, χ2) the four-vector components that transform non-trivially
under boosts. We then rewrite Eq. (1.5) in an exponentiated form as to make the
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generators explicit:

(
χ ′
1

χ ′
2

)
=
(

cosh α
2 − sinh α

2

− sinh α
2 cosh α

2

)(
χ1
χ2

)
=

=
[
cosh

α

2
·
(
1 0
0 1

)
− sinh

α

2
·
(
0 1
1 0

)
+ 0 ·

(
0 −i
i 0

)
+ 0 ·

(
1 0
0 −1

)](
χ1
χ2

)
,

=
[
cos
(

i
α

2

)
1 − i sin

(
i
α

2

)
σ · nα

](
χ1
χ2

)
= ei(−i σ

2 )·α
(

χ1
χ2

)
(1.27)

where |nα| = 1. By defining the transformation parameter as α/2, we could get
directly the correct normalisation for the generators. Since a generic element of a
group can be always parametrised as exp{iK · α}, where K are the generators, an
immediate comparison with Eq. (1.27) yields the result:

K = −i
σ

2
. (1.28)

Discussion

The six generators of the Lorentz group satisfy the Lie algebra:

[Ji, Jj] = i εijkJk, [Ji, Kj] = i εijkKk, [Ki, Kj] = −i εijkJk (1.29)

where Ji are the generators of the space rotations and Ki of the boosts. The com-
binations J± = (J ± iK)/2 commute among themselves and satisfy individually
the algebra of SU (2). For d = 2, we know that the σ/2 matrices provide a fun-
damental representation of the generators of SU (2). Given that J = J+ + J− and
K = −i(J+ − J−), and considering the commutation rules in Eq. (1.29), one can
easily verify that J = σ/2 and K = −iσ/2 provide a representation of the gener-
ators. Notice that K = +iσ/2 provides an equally valid representation, since the
commutation rules are all invariant under K → −K.

The existence of two inequivalent representations of the boost vector in dimension
d = 2, the so-called ( 12 , 0) and (0, 1

2 ), which are related one-to-another by a parity
operation,3 has important implication for the quantisation of spin-1/2 fields (Weil
spinors). The latter can indeed exist in two chiralities, depending under which rep-
resentation of the Lorentz group they transform: right-handed (RH) and left-handed
(LH) spinors.

Problem 1.6 Prove that all RH (LH) spin-1/2 particles of mass m have helicity
h = +1/2 (h = −1/2) in the limit |p| � m.

3K is a vector under rotations, see e.g. the second of Eq. (1.29), and it also transforms as a vector
under parity transformations, since a parity operation must change the direction of the boost.
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Discussion

The helicity operator is defined as:

h = S · p
|p| , (1.30)

and it acts on the spin vector of the wave function. Notice that h is not a priori
Lorentz-invariant, since, for a massive particle, it is always possible to find a refer-
ence frame where the momentum of the particle flips direction. This is not the case
for massless particles, for which the helicity is instead a conserved quantum number.

Solution

As discussed in Problem 1.5 there are two inequivalent representation of the Lorentz
group in dimension d = 2, which is the space suitable to construct the spin states for
spin-1/2 particles. The generic passive transformation Λ(θ,α) can be written as:

Λ(θ ,α) = ei(J·θ−K·α) =
{
exp

[
i σ
2 · θ − σ

2 · α
]

RH

exp
[
i σ
2 · θ + σ

2 · α
]

LH
(1.31)

The spin operator is represented by thematrix S = σ/2. Let’s denote the spinor in the
centre-of-mass frame by ξ ∗ for the RH fermion and by η∗ for the LH fermion. Let’s
also chose the basis of eigenvectors of σz, where the z-axis is assumed to be aligned
with the boost direction. The spinors ξ and η in the laboratory frame, where the
particle three-momentum is p, can be obtained by applying a boost with parameter
α = −α ez, giving:

{
ξ = Λ(α)ξ ∗ = (cosh α

21 − sinh α
2 σ · (−ez)

)
ξ ∗ = (cosh α

21 + sinh α
2 σz
)
ξ ∗

η = Λ(α)η∗ = (cosh α
21 + sinh α

2 σ · (−ez)
)
η∗ = (cosh α

21 − sinh α
2 σz
)
η∗

(1.32)

If we now take the spinor in the rest frame ξ ∗ and η∗ to a generic admixture of ± 1
2

eigenstates, i.e. (cos δ
2 , sin

δ
2 ), the polarisation in the laboratory frame will be:

PR,L
+1/2 − PR,L

−1/2

PR,L
+1/2 + PR,L

−1/2

= cos2 δ
2 (cosh

α
2 ± cosh α

2 )2 − sin2 δ
2 (cosh

α
2 ∓ cosh α

2 )2

cos2 δ
2 (cosh

α
2 ± cosh α

2 )2 + sin2 δ
2 (cosh

α
2 ∓ cosh α

2 )2
=

(cosh2 α
2 + sinh2 α

2 ) cos δ ± 2 sinh α
2 cosh

α
2

cosh2 α
2 + sinh2 α

2 ± 2 sinh α
2 cosh

α
2 cos δ

= cos δ ± tanh α

1 ± tanh α cos δ
=

= cos δ ± β

1 ± β cos δ
. (1.33)
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The last equality makes use of Eq. (1.5) to relate the boost parameter to the velocity
in the laboratory frame. It can be noticed that this expression is identical to the trans-
formation law of the cosine of the polar angle of a massless four-vector under a boost
β, if one interprets δ as the polar angle in the centre-of-mass frame, see Eq. (1.40).
In particular, if β → 1, as it is the case for |p| � m, the polarisation tends to ±1
for 0 < δ < π and to 0 for δ = 0, π . For an unpolarised state in the centre-of-mass
(δ = π/2), the polarisation in the laboratory frame is given by +β for RH fermions
and by−β for LH. Therefore, ultra-relativistic spin-1/2 particles of a given chirality
will also have a net helicity, independently from their spin state in the centre-of-mass
frame: the helicity is positive for right-handed fermions and negative for left-handed.

Suggested Readings

The reader is addressed to a more complete textbook on quantum field theory. See
e.g. Chap. 3 of Ref. [2] or Chap.9 of Ref. [3].

Problem 1.7 TheΔ(1232) resonance can be produced by scattering pions of appro-
priate energy against a proton target. Assume the protons to be unpolarised. Deter-
mine the angular distribution of the scattered pions in the centre-of-mass frame.

Discussion

As discussed in the introduction, the Lorentz group comprises the set of spatial rota-
tions. Invariance of the dynamics under rotations becomes an important selection rule
when the particles involved carry spin, since the latter transforms non trivially under
rotations. A useful tool to investigate the behaviour of spin states under rotations is
provided by the so-called rotation matrix, dj

m′, m(θ), defined by:

exp
[−iθJ · ey

] |j, m〉 =
∑

m′
dj

m′, m(θ)|j, m′〉 (1.34)

Here, the vectors |j, m〉 are the eigenstates of the angular momentum operators J2

and Jz. As made evident by Eq. (1.34), the elements of the rotation matrix are the
linear coefficients of the rotated of the generic eigenstate by an angle θ around an
axis orthogonal to the quantisation axis z. It can be also shown that:

dj
m′, m = (−1)m−m′

dj
m, m′ = dj

−m, −m′ , (1.35)

see e.g. Ref. [4]. The rotation matrix proves very useful when one wants to analyse
transition probabilities between states related by a spatial rotation.
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Solution

When the centre-of-mass energy approaches 1.2 GeV, the π p scattering becomes
resonant due to a baryonic bound-state, called Δ. The Δ baryons are members of
the j = 3/2 decuplet. At the resonance, the dominant state participating in the
scattering can be therefore assumed to have j = 3/2. The eigenvalue of Ĵz, where z
is the axis defined by the initial centre-of-mass momentum of the proton, p, can take
the values m = ±1/2, since only the proton can contribute to Jz through its spin.
The assumption of unpolarised protons implies that the two configurations must be
equally likely. When theΔ resonance is produced, it decays into a new π p state with
centre-of-mass momentum p′. Let the angle between p and p′ be denoted by θ . The
decay amplitude is fully determined by angular momentum conservation. Indeed,
the final state corresponds to the rotated by θ of either | 32 ,+ 1

2 〉 or | 32 ,− 1
2 〉. The two

corresponds to orthogonal states, so the probability of decaying to an angle θ is given
by the sum of the probabilities:

1

Γ

dΓ

d cos θ
= 1

2
· 1

Γ

dΓm=−1/2

d cos θ︸ ︷︷ ︸
∑

m′
∣∣∣d3/2

m′,−1/2

∣∣∣
2

+1

2
· 1

Γ

dΓm=+1/2

d cos θ︸ ︷︷ ︸
∑

m′
∣∣∣d3/2

m′ ,+1/2

∣∣∣
2

=

=
(
3 cos θ − 1

2
cos

θ

2

)2

+
(

−3 cos θ + 1

2
sin

θ

2

)2

=

= 1

4

[
9 cos2 θ + 1 − 6 cos θ

(
cos2

θ

2
− sin2

θ

2

)]
= 1 + 3 cos2 θ

4
.

(1.36)

Notice that we have made use of Eq. (1.35) to simplify the calculations. The angular
distribution in the centre-of-mass frame will therefore feature a dependence on the
polar angle θ of the form ∼(1 + 3 cos2 θ).

Suggested Readings

The reader is addressed to the original paper by E. Fermi et al. [5] about the evidence
of the Δ resonance and to the determination of its spin based on the distribution of
the scattering angles. A compendium of formulas for the rotation matrices can be
found in Table43 of Ref. [4].

Problem 1.8 A massless spin-1/2 particle scatters elastically against a much heav-
ier particle that can be assumed to be always at rest. The two particles exchange
force through an helicity-conserving interaction which does not change the spin of
the target particle, if any. Prove that the light particle cannot be scattered exactly
backwards.
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Discussion

In the SM, the interaction between spin-1/2 particles and gauge bosons are helicity-
conserving, since they only involve combinations of vector V and axial A currents.
When the theory is not symmetric for RH and LH particles, it is said to be chiral,
since it distinguishes between the two chiralities. The SU (2)L interaction that under-
lies the EWK force is chiral, since it only involves LH fermions. On the contrary,
QCD and the EM interaction treat RH and LH fermions on the same footing, see
Sect. 5.2.

Solution

Amassless spin-1/2 particle can be in only one helicity state, depending on its chiral-
ity. If the interaction conserves the chirality, the particle will have the same helicity
before and after the scattering. If the target particle does not participate to the inter-
action through its spin, it will also conserve its projection along the scattering axis.
If the projectile were to scatter exactly backwards, it would imply a change of the
overall angular momentum projection along the scattering axis by |Δm| = 1, which
would violate angular momentum conservation. In terms of the rotation matrices of
Eq. (1.34), we can argument that the scattering amplitude at an angle θ should be
proportional to d1/2

±1/2, ±1/2 = cos θ
2 , which indeed vanishes at θ = π .

Suggested Readings

The reader is addressed to Chap.1 of Ref. [2] for a deeper discussion on this subject.

Problem 1.9 Determine the relativistic Doppler effect and the law of aberration of
light for an observer moving with velocity v = βc with respect to the light source.

Solution

The invariance under Lorentz transformations requires the phase of a light wave to
be the same for two reference frames R and R ′, moving one with respect to the
other with constant velocity βc. In the frame R, the frequency of the wave is ω

and its direction of propagation n, while in R ′, the same quantities are ω′ and n′.
Synchronising the two clocks so that at the time t = t′ = 0 the wave has a phase
φ = 0 at the origin r = r′ = 0, we have:

φ(t, r) = φ′(t′, r′) ⇔ ω(t − n · r) = ω′(t′ − n′ · r′). (1.37)

The coordinates (t, r) can be expressed in terms of (t′, r′) by using the transformation
of Eq. (1.4), with the only modification β → −β, since R, the frame where the
light source is at rest, moves with velocity −β as seen from R ′. It is convenient to
choose the coordinate system so that β is aligned along the x-axis. We also write

http://dx.doi.org/10.1007/978-3-319-70494-4_5
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n = cos θex + sin θey. By equating the coefficients of the space-time coordinates in
Eq. (1.37), we obtain the following system of equations:

⎧
⎪⎨

⎪⎩

ω′ = ωγ (1 − β cos θ) ≡ ωγ (1 − β · n)

ω′ cos θ ′ = ωγ (cos θ − β)

ω′ sin θ ′ = ω sin θ

(1.38)

The first equation gives the relativistic Doppler effect. Taking the ratio of the last two
equations:

ω′ sin θ ′

ω′ cos θ ′ = tan θ ′ = sin θ

γ (cos θ − β)
, (1.39)

which describes the aberration of light. It is useful to write explicitly the two other
trigonometric relations:

cos θ ′ = cos θ − β

1 − β cos θ
. sin θ ′ = sin θ

γ (1 − β cos θ)
, (1.40)

which can be derived from Eq. (1.38), or even directly from Eq. (1.39) by using the
trigonometric identity cos θ = ±(1 + tan2 θ)− 1

2 .

Problem 1.10 Derive the transformation law for the velocity v of a massive particle
under a generic Lorentz transformation.

Solution

Let the particle velocity in the reference frame R be denoted by v. The reference
frame R ′ in which we want to calculate the particle velocity moves with velocity
β as seen from R. It’s convenient to choose the coordinate system so that β is
aligned along the x-axis. From the Lorentz transformations Eq. (1.4) applied to the
four-vector (t, r), one has:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dt′ = γ (dt − βdx)

dx′ = γ (−β dt + dx)

dy′ = dy

dz′ = dz

(1.41)
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Taking the ratios:

v′
x = dx′

dt′
= −β dt + dx

dt − β dx
= vx − β

1 − βvx

v′
y = dy′

dt′
= dy

γ (dt − β dx)
= vy

γ (1 − βvx)

v′
z = dz′

dt′
= dz

γ (dt − β dx)
= vz

γ (1 − βvx)

(1.42)

from which we can derive the transformation of polar angle:

tan θ ′ = sin θ

γ (cos θ − β/|v|) , (1.43)

which agrees with Eq. (1.39) for the case |v| = 1.
Let’s now consider the two distinct cases for |v| < 1, namely: |v| < β and

|v| ≥ β. For later consistency, we redefine the variables using the same notation
that will be adopted to study the kinematics in the centre-of-mass frame, namely we
replace |v| → β∗ and β → −β. With this choice, Eq. (1.43) becomes:

tan θ = sin θ∗

γ (cos θ∗ + β/β∗)
. (1.44)

First, we notice that, for β/β∗ < 1, we have:

lim
θ∗→π

tan θ = 0−, (1.45)

which means that a particle moving backwards inR∗ will also appear moving back-
wards inR. This is not the case forβ/β∗ > 1, because, in the same limit, tan θ → 0+.
Since tan θ = 0 for θ∗ = 0, by Rolle’s theorem there must be an angle θ∗

max giv-
ing the largest opening angle in R. To find such an angle, we first use the relation
cos x = ±(1 + tan2 x)− 1

2 to express cos θ as a function of θ∗, and then set its first
derivative to zero to find the maximum:

cos θ = ± 1√
1 + tan2 θ

= + γ (cos θ∗ + β/β∗)√
γ 2(cos θ∗ + β/β∗) + (1 − cos2 θ∗)

(1.46)

The choice of the “+” sign is motivated by the fact that for β > β∗, tan θ is always
positive, so that θ < π

2 and cos θ > 0. For sake of notation, we define cos θ∗
max = x

and β/β∗ = ξ . Then, we get:
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Fig. 1.1 Relation between
the cosine of the polar angle
in two reference frames
related by a boost β = 0.8
for three different values of
the particle velocity β∗: 0.6
(top), 0.9 (middle), and 1
(bottom)

0 = d cos θ

dx

∣∣∣
θ∗
max

=
√

γ 2(x + ξ)2 + 1 − x2 − (x + ξ)
2γ 2(x+ξ)−2x

2
√

γ 2(x+ξ)2+1−x2

γ 2(x + ξ)2 + 1 − x2
,

0 = γ 2(x + ξ)2 + 1 − x2 − (x + ξ)[γ 2(x + ξ) − x] = 1 + xξ, (1.47)

from which:

cos θ∗
max = −β∗

β
. (1.48)

At this centre-of-mass angle, the opening angle in the laboratory frame is given by:

tan θmax =
√

1 −
(

β∗

β

)2 [
γ

(
−β∗

β
+ β

β∗

)]−1

= β∗

γ
√

β2 − β∗2 . (1.49)

Figure1.1 shows a graph of cos θ as a function of cos θ∗ for a boost β = 0.8 and
three representative values of β∗.

Problem 1.11 Consider two particles with velocity vA and vB. Determine the veloc-
ity of particle B in the rest frame of A.

Solution

It is convenient to first write Eq. (1.42) in a vectorial form. Taking into account both
the longitudinal and transverse components, we have:

v′ = 1

γ (1 − v · β)

[
v +

(
γ − 1

β2
v · β − γ

)
β

]
. (1.50)
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To express the velocity vB|A of the particle B in the rest frame of A, we need to
perform a boost with parameter β = vA, so that Eq. (1.50) becomes:

vB|A = 1

γA(1 − vA · vB)

[
vB +

(
γA − 1

|vA|2 vA · vB − γA

)
vA

]
,

γ 2
A (1 − vA · vB)2|vB|A|2 = |vB|2 + |vA|2

[
(γA − 1)2

|vA|4 (vA · vB)2 − 2γA(γA − 1)

|vA|2 vA · vB + γ 2
A

]

+ 2(vA · vB)2
γA − 1

|vA|2 − 2γAvA · vB =

= (vA · vB)2

[
(γA − 1)2

|vA|2 + 2(γA − 1)

|vA|2
]

− 2vA · vB
[
γA(γA − 1) + γA

]+ |vB|2 + |vA|2γ 2
A =

= γ 2
A

[
(1 − vA · vB)2 − (1 − |vA|2)(1 − |vB|2)

]
,

|vB|A| =
√

1 − (1 − |vA|2)(1 − |vB|2)
(1 − vA · vB)2

=
√

(vA − vB)2 − (vA × vB)2

(1 − vA · vB)
. (1.51)

The last equality is easy to prove since |vA×vB|2 = |vA|2|vB|2−(vA·vB)2. This expres-
sion is symmetric with respect to A ↔ B, therefore we also have |vB|A| = |vA|B|.

Discussion

From an immediate comparison with Eq. (1.20), we notice that:

|vB|A| = vrel
1 − vA · vB

. (1.52)

If we now multiply this expression by the density flux of B times the density of A in
the rest frame of A, we obtain:

ρA|A ρB|A |vB|A| = γA ρA|A ρB|A
γA(1 − vA · vB)

√
(vA − vB)2 − (vA × vB)2 =

= ρA ρB

√
(vA − vB)2 − (vA × vB)2, (1.53)

where we have used the fact that ρB|A is the transformed of the density ρB in the rest
frame of A, whereas γA ρA|A is the density of A in the laboratory frame. This can be
seen as another proof that the scalar variable I of Eq. (1.20) is Lorentz-invariant,
since all the quantities at the left-hand side of Eq. (1.53) are defined in a particular
reference frame, i.e. the rest frame of either A or B.

Problem 1.12 Determine the minimum and the maximum opening angle between
the two massless particles produced in the decay of a particle of mass m and momen-
tum p.
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Fig. 1.2 Representation of a
boost β from the laboratory
frame R to the
centre-of-mass frame R∗

−βex
θ∗

π − θ∗ θ2

θ1

p∗

−p∗

p1

p2

R∗ R

+βex

→ R∗→ R

Solution

In the centre-of-mass frame, the two massless particles have momenta ±p∗ and
energy E∗ = |p∗| = m/2. We choose the reference frame so that the x-axis is
aligned along the direction of p and the decay takes place in the x–y plane. Let θ∗
be the polar angle of the photon moving along the y > 0 direction, so that the other
photonmakes an angle of π −θ∗. Seen from the laboratory frame, the centre-of-mass
frame moves with velocity β = |p|/Ep, see Fig. 1.2. The momentum components in
the laboratory frame are therefore given by Eq. (1.4), with themodification β → −β:

⎧
⎪⎨

⎪⎩

E1,2 = γ (E∗ ± β|p∗| cos θ∗) = γ E∗(1 ± β cos θ∗)
p x
1,2 = γ (βE∗ ± |p∗| cos θ∗) = γ E∗(β ± cos θ∗)

p y
1,2 = |p∗| sin θ∗

(1.54)

⇒ tan θ1,2 = p x
1,2

p y
1,2

= sin θ∗

γ (β ± cos θ∗)
, (1.55)

which agrees with Eq. (1.39). It is convenient to express cos θ1,2 in terms of cos θ∗.
To this purpose, we could either use Eq. (1.40) directly, or notice that cos θ1,2 =
p x
1,2/E1,2, so that:

cos θ1 = β + cos θ∗

1 + β cos θ∗ , sin θ1 = sin θ∗

γ (1 + β cos θ∗)
(1.56)

cos θ2 = β − cos θ∗

1 − β cos θ∗ , sin θ2 = sin θ∗

γ (1 − β cos θ∗)
(1.57)

Let’s define the opening angle between the two particles in the laboratory frame by
φ. Then:

cosφ = cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 =
= β2 − cos2 θ∗

1 − β2 cos2 θ∗ − (1 − β2)
sin2 θ∗

1 − β2 cos2 θ∗ = 2β2 − 1 − β2 cos2 θ∗

1 − β2 cos2 θ∗ =

= 1 − 2

(
1 − β2

1 − β2 cos2 θ∗

)
. (1.58)
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The right-hand side of Eq. (1.58) in a monotonously decreasing function of cos2 θ∗ ∈
[0, 1], so that:

cos(φmax) = min
θ∗ (cosφ) = 1 − 2

1 − β2

1 − β2 cos2 θ∗
∣∣∣
cos2 θ∗=1

= −1

⇒ φmax = φ(θ∗ = 0, π) = π (1.59)

cos(φmin) = max
θ∗ (cosφ) = 1 − 2

1 − β2

1 − β2 cos2 θ∗
∣∣∣
cos2 θ∗=0

= 2β2 − 1

⇒ φmin = φ(θ∗ = π

2
) = arccos(2β2 − 1) = 2 arccos(β) (1.60)

An interesting case is when |p| � m, so that β ≈ 1 and φmin is small. By Taylor-
expanding the cosine around zero, we obtain:

2β2 − 1 = cosφmin ≈ 1 − φ2
min

2
⇒ φmin = 2

√
1 − β2 = 2

γ
. (1.61)

For large boosts, the opening angle between the two photons is therefore contained
in the range [2/γ, π ]. Notice that, for massless particles, it is always possible for one
of them to move backwards with respect to the direction of the mother particle. For
large boosts, however, the backward-emitted photon gets increasingly red-shifted,
see the first of Eq. (1.54), or equivalently the first of Eq. (1.38), so that it eventually
becomes of vanishing energy for γ � 1.

Problem 1.13 Determine the minimum and the maximum opening angle between
two particles with mass m1 and m2 produced in the decay of a particle of mass m and
momentum p.

Solution

This exercise is analogous to Problem 1.12. We can therefore start from Eq. (1.54)
for the more general case m1, m2 > 0, giving an equation for tan θ1,2 as in Eq. (1.44).
From this expression, we can compute the tangent of the opening angle φ:

tan(φ) = tan θ1 + tan θ2

1 − tan θ1 tan θ2
=

=
β

γ

β∗
1+β∗

2
β∗
1β∗

1

√
1 − cos2 θ∗

−β2 cos2 θ∗ + β
β∗
1−β∗

2
β∗
1β∗

2
cos θ∗ +

(
β2

β∗
1β∗

2
− 1 + β2

) . (1.62)

where β∗
1,2 = |p∗|/E∗

1,2 are the velocities of two particles in the centre-of-mass frame.
The denominator D(cos θ∗) at the right-hand side of Eq. (1.67) is a second-degree
polynomial with negative concavity. Let’s study its value for cos θ∗ = ±1:



1.1 Lorentz Transformations 19

D(±1) = β2

β∗
1β

∗
2

± β

β∗
2

∓ β

β∗
1

− 1. (1.63)

These expressions are two parabola in β with roots [−β∗
1 , β

∗
2 ] and [−β∗

2 , β
∗
1 ], respec-

tively. Since the concavity is positive, we have:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(+1) > 0, D(−1) > 0 if β∗ > β∗
1,2

D(+1) > 0, D(−1) < 0 if β∗ > β∗
1 and β∗ < β∗

1

D(+1) < 0, D(−1) > 0 if β∗ < β∗
2 and β∗ > β∗

1

D(+1) < 0, D(−1) < 0 if β∗ < β∗
1,2

(1.64)

Hence, if β > max{β∗
1 , β

∗
2 }, then D(cos θ∗) > 0 for every angle θ∗. Consequently,

tan φ in Eq. (1.62) is limited and has a global maximum for some value cos θ∗
max.

Conversely, if at least one among β∗
1 and β∗

2 is larger than β, the denominator has
to vanish at some point, as for Rolle’s theorem, and then it flips sign, so that tan φ

eventually approaches 0− as cos θ∗ → ±1. If instead both β∗
1 and β∗

2 exceed β, then
D can be either always negative, or vanish twice.We can summarise the various cases
as follows:

• β > max{β∗
1 , β

∗
2 }: the maximum opening angle φmax corresponds to atan (xmax),

where cos θ∗
max is the value that maximises the right-hand side of Eq. (1.62). We

can easily see that such value does not correspond, in general, to θ∗ = π/2. One
can find a numerical solution for φmax, for example using Newton’s method to
iteratively maximise tan φ. Appendix 1.3 provides an example of how to deter-
mine numerically argmax {tan φ} by using a computer program in Python.4 The
case β∗

1 = β∗
2 = β∗ allows to simplify further Eq. (1.67). First one notices that

tan(φ) becomes an even function of cos θ∗, hence we the maximum has to occur
at cos θ∗ = 0. At this angle, we have:

tan(φmax)β∗
1=β∗

2
= 2 γ β β∗

γ 2β2 − β∗2 . (1.65)

The minimum opening angle is φmin = 0, corresponding to a pair of collinear
particles in the laboratory frame.

• β∗
2(1) > β, β∗

1(2) < β: the backward emission in the centre-of-mass frame of
a particles with velocity larger than β, corresponds to a backward-propagating
particle in the laboratory frame, hence φmax = π . Instead, since β∗ < β for the
other particle, the solution with cos θ∗ = −1 corresponds instead to a pair of
collinear particles in the laboratory frame, hence φmin = 0.

• β < min{β∗
1 , β

∗
2 }. In this case, φmax = π like the previous scenario, while φmin is

strictly larger than zero, and it can be computed, again numerically, starting from
Eq. (1.62).

4For example, using the input values β = 0.8, β∗
1 = 0.3 and β∗

2 = 0.5, one gets cos θ∗
max = 0.392,

which is in agreement with the numerical evaluation in Fig. 1.3.
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Fig. 1.3 The trigonometric
tangent of the opening angle
φ in the laboratory frame
between the decay products
of a massive particle with
velocity β = 0.8, shown as a
function of cos θ∗, where θ∗
is the polar angle in the
centre-of-mass frame. Three
different cases are
considered: β∗

1,2 = 1 > β,
β∗
2 > β > β∗

1 , and β∗
1,2 > β,

where β∗
1,2 are the

centre-of-mass velocities of
the two particles

Figure1.3 shows tan φ as a function of cos θ∗, assuming β = 0.8 and for three
representative cases: β∗

1,2 = 1 > β, β∗
2 > β > β∗

1 and β∗
1,2 > β.

Bando n. 18211/2016

Problem 1.14 An electromagnetic calorimeter is able to separate the showers
induced by high-energy photons when the separation angle between the two photons
is larger than 5◦. The calorimeter is then used to detect π0’s. What is the largest π0

energy such that any π0 decay can be reconstructed as a pair of distinct photons?

Solution

Given that a detector resolution of 5◦ is small, we can use the approximate formula
of Eq. (1.61) to express the minimum opening angle between the two photons as a
function of the π0 energy. The condition that all the π0’s get reconstructed as two
separate photons amounts to require that the minimum opening angle exceeds the
resolution of the detector, that is to say:

φmin = 2

γ
= 2mπ0

E
> 5◦ · π

180◦ ⇒ E <
2mπ0

0.87 × 10−1
≈ 3.1 GeV, (1.66)

where we have used the PDG value mπ0 = 135 MeV [4].

Problem 1.15 A particle of mass m and momentum p decays to a pair of massless
particles. In the rest frame of themother particle, the angular distribution of the decay
products is described by the probability density (Γ ∗)−1dΓ ∗/d cos θ∗, where θ∗ is the
polar angle with respect to p. What is the corresponding density Γ −1dΓ/d cos θ in
the laboratory frame? Find out an approximate formula valid for an isotropic decay
in the limit |p| � m.
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Solution

If the decay distribution in the centre-of-mass frame is described by the density
(Γ ∗)−1dΓ ∗/d cos θ∗, in the laboratory frame one has:

1

Γ

dΓ

d cos θ
= 1

Γ ∗
dΓ ∗

d cos θ∗

∣∣∣∣
d cos θ∗

d cos θ

∣∣∣∣ . (1.67)

The relation between cos θ∗ and cos θ can be obtained from Eq. (1.56), giving:

∣∣∣∣
d cos θ∗

d cos θ

∣∣∣∣ =
|−(β cos θ − 1) − (β − cos θ)β|

(1 − β cos θ)2
=

= 1 − β2

(1 − β cos θ)2
= 1

γ 2

1

(1 − β cos θ)2
, (1.68)

where β = |p|/√|p|2 + m2. Inserting this expression into the right-hand side of
Eq. (1.67), we obtain:

1

Γ

dΓ

d cos θ
=
[
1

γ 2

1

(1 − β cos θ)2

]
1

Γ ∗
dΓ ∗

d cos θ∗ . (1.69)

The Jacobian factor at the right-hand side of Eq. (1.68) implies that the angular
distribution in the laboratory frame will be skewed towards the boost direction. The
ratio between the Jacobian factor for backward- and forward-emitted photons is
(1 − β)2/(1 + β)2 = [(1 + β)γ

]−4
: already for γ = 5, this ratio is 10−4.

Let’s now consider in more detail the case |p| � m. In this limit, we can approx-
imate:

1 − β = 1 −
√

1 − 1

γ 2
≈ 1

2γ 2
. (1.70)

As already discussed, Eq. (1.68) implies a forward-peaked angular distribution, so
that, for all practical purposes, we can assume θ � 1 and consider only the first-order
Taylor expansion of cos θ . With this approximation, Eq. (1.67) can be simplified to:

1

Γ

dΓ

d cos θ
≈ 1

γ 2

1
(
1 − β + β θ2

2

)2
1

Γ ∗
dΓ ∗

d cos θ∗ ≈ 4γ 2

(
1 + γ 2θ2

)2
1

Γ

dΓ

d cos θ∗ . (1.71)

A case of special interest is for an isotropic angular distribution, which is the appro-
priate case for spin-0 particles or unpolarised beams. The angular distribution and
the energy of the particle in the laboratory frame are then given respectively by:
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1

Γ

dΓ

dθ
≈ 2γ 2 θ
(
1 + γ 2θ2

)2 , E(θ) = E∗

γ (1 − β cos θ)
≈ 2γ

1 + γ 2θ2
E∗, (1.72)

whereE∗ is the energy of themassless particle in the centre-of-mass frame. Themean
angle 〈θ〉 and RMS σθ can be computed from the first of Eq. (1.72) by assuming that
the approximation is valid up to the maximum laboratory angle θ = π :

〈θ〉 =
∫ π

0
dθ θ

(
1

Γ

dΓ

dθ

)
= π

2γ
+ O

(
1

γ

)
(1.73)

〈
θ2
〉 =

∫ π

0
dθ θ2

(
1

Γ

dΓ

dθ

)
= 1

γ 2

[
log(γ 2π + 1) − 1 + O

(
1

γ 2

)]
(1.74)

σθ =
√〈

θ2
〉− 〈θ〉2 = 1

γ

[
log(γ 2π + 1) − 1 + π2

4

]
+ O

(
1

γ 2

)
(1.75)

The cumulative distribution F(θ) can be obtained by integrating the differential
distribution in Eq. (1.72). It can be used to determine the laboratory angle containing
a given fraction α of the decay particles:

F(θ) = 1 − 1

γ 2θ2 + 1
⇒ θα = 1

γ

√
α

1 − α
. (1.76)

Problem 1.16 A particle of mass M and three-momentum along the z-axis decays
into a pair of massless particles. Let the angular distribution of the decay products
in the rest frame be described by the density (Γ ∗)−1dΓ ∗/d cos θ∗. Show that the
transverse momentum distribution Γ −1dΓ /d|pT| develops an integrable singularity
at |pT| = |p∗|, where the trasverse momentum pT is defined as the projection of p
onto the plane perpendicular to the z-axis, and p∗ is the centre-of-mass momentum
of the decay particle. Consider now the transverse mass mT of the two daughter
particles, defined as:

m2
T = (ET 1 + ET 2)

2 − (pT 1 + pT 2)
2 = 2|pT 1||pT 2|(1 − cos(Δφ)) (1.77)

Show that the distribution Γ −1dΓ /dmT features a singularity at mT = M.

Solution

The assumption that the momentum of the decaying particle purely longitudinal
allows to relate the centre-of-mass kinematics to the transverse variables in laboratory
frame through simple formulas, since:
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|pT 1| = |pT 2| ≡ |pT| = |p∗|
√
1 − cos2 θ∗

1

Γ

dΓ

d|pT| = 1

Γ ∗
dΓ ∗

d cos θ∗

∣∣∣∣
d cos θ∗

d|pT|
∣∣∣∣ =

1

Γ ∗
dΓ ∗

d cos θ∗
|pT|

|p∗|2√1 − |pT|2/|p∗|2 =

= 1

Γ ∗
dΓ ∗

d cos θ∗

(
4|pT|

M2
√
1 − 4|pT|2/M2

)
(1.78)

where we have used the relation |p∗| = M/2, see Eq. (1.90). Therefore, the trans-
verse momentum distribution features a singularity at |pT| = |p∗| = M/2, which is
entirely due to the change of variables, hence the name of Jacobian peak. Notice that
the singularity is integrable, since dΓ/d|pT| ∼ (1 − 4|pT|2/M2)− 1

2 , which in the
neighbourhood of the singularity goes like∼ε− 1

2 , where we have put ε = |p∗|−|pT|.
In terms of the transverse mass of Eq. (1.77), we have:

m2
T = 2|pT 1||pT 2|(1 − cos(Δφ)) = 4|pT|2

1

Γ

dΓ

dmT
= 1

Γ

dΓ

d|pT|
∣∣∣∣
d|pT|
dmT

∣∣∣∣ =
1

Γ ∗
dΓ ∗

d cos θ∗

⎛

⎝ mT

M2
√
1 − m2

T/M2

⎞

⎠ . (1.79)

Thus, the transverse mass features a Jacobian peak located at the mass of the decay-
ing particle.

Discussion

The appearance of a Jacobian peak in both the transverse momentum and the trans-
verse mass distribution of the decay products of a heavy resonance provides a power-
ful handle to distinguish such events from a non-resonant background. For example,
the transverse mass has been extensively used at hadron colliders as the single most-
efficient signature to identify the decay of W bosons into a charged lepton and a
neutrino. While the charged lepton momentum can be fully reconstructed (if the
lepton is either e or μ), the neutrino does not interact with the detector. An indirect
evidence of its production is however provided by the momentum imbalance in the
transverse plane, which, in the absence of other invisible particles, is just given by
the neutrino transverse momentum. Thus, even in the presence of invisible particle,
the transverse mass of Eq. (1.77) can be computed.

Two remarks are due here. Firstly, in real experiments, the Jacobian peak is
smeared by the finite detector resolution and by the natural width of the decay-
ing particle, see e.g. Ref. [6] for the effect of the W boson width. Secondly, the
expressions in Eqs. (1.78) and (1.79) have been derived under the assumption that
the momentum of the decaying particle is purely longitudinal: if that is not true,
i.e. if the particle has a momentum component orthogonal to the z-axis, the formula
change. Differently from the transverse momentum, the transverse mass variable is
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less affected by a finite transverse momentum of the decaying particle. This is further
elaborated in Problem 1.17.

Problem 1.17 Show that the transverse momentum distribution Γ −1dΓ/d|pT| of
Eq. (1.78) for a particle of mass M decaying to massless particles, receives O(β)

corrections when the decaying particle velocity β has a transverse component, while
for the transverse mass distribution Γ −1dΓ/dmT such corrections start at O(β2).

Solution

All transverse variables are invariant under longitudinal boosts, as one can easily
verify.We then study their properties under transverse boosts.We first write Eq. (1.4)
in a vectorial form as:

p′ = (γ p · β̂)β̂ − β γ E β̂ + p − (p · β̂)β̂ = p +
[
(γ − 1)

β2
p · β − γ E

]
β

(1.80)

E′ = γ E − γ p · β (1.81)

If β is a small transverse vector, and the momentum p is almost longitudinal, we can
work out the transformation properties of pT:

p′
T ≈ pT − Eβ ⇒ δ|pT| = −Eβ · pT

|pT| . (1.82)

hence the transversemomentum changes already at the first order inβ. The transverse
mass for two massless particles is defined as:

m2
T = 2|pT 1||pT 2| − 2pT 1 · pT 2. (1.83)

This expression resembles closely the invariant mass squared m2 = 2p1p2 for two
transverse vectors, but it has not the same properties under transverse Lorentz boosts.
This can be proved by noticing that

√
|pT 1|2 + p2z 1

√
|pT 2|2 + p2z 2 − pT 1 · pT 2 − pz 1pz 2 (1.84)

is invariant under both longitudinal and transverse boosts, since it coincides with the
invariant mass squared (p1 + p2)2. Since pz is invariant under transverse boosts, then
it must hold:

δ (pT 1 · pT 2) = δ

(√
|pT 1|2 + p2z 1

√
|pT 2|2 + p2z 2

)

= |pT 1| δ|pT 1|
E1

E2 + |pT 2| δ|pT 2|
E2

E1. (1.85)
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Fig. 1.4 Distribution of the transverse momentum |pT| (left) and transverse mass mT (right)
obtained from a set of toy MC events where an unpolarised resonance of mass M decays into
a pair of massless particles. Four different velocities β of the mother particle are assumed, differing
by the component on the transverse plane. The dashed histogram corresponds to a purely longitudi-
nal velocity, while the other three distributions correspond to increasingly larger transverse boosts
βT

Using Eq. (1.82) and (1.85), we get:

δm2
T = (|pT 2|E1 − |pT 1|E2) β ·

(
pT 2

|pT 2| − pT 1

|pT 1|
)

, (1.86)

which vanishes because, in the centre-of-mass frame, E1 = E2 and |pT 1| = |pT 2|.
Hence, at first order in β, the transverse mass does not change. This is however

not true at second order, as one can readily verify by considering the O(β2) term.
The response of the transverse momentum and transverse mass under boosts can

be studied by using toy events generated with MC techniques, see Problem 4.5, in
which the decay of an unpolarised resonance of massM is simulated. A simpleROOT
macro that performs the toy generation is illustrated in Appendix 1.3. The results
are shown in Fig. 1.4. As expected, the mT variable is found to be significantly more
stable against transverse boosts compared to |pT|. An other interesting feature of
the mT variable is that the location of the Jacobian peak location is not affected by
boosts; this is clearly not the case for the transverse momentum, whose peak value
is significantly smeared by transverse boosts.

Problem 1.18 A particle of mass m and momentum p scatters against an identical
particle of mass m, initially at rest. Compute the minimum opening angle between
the two particle directions after the scattering.

http://dx.doi.org/10.1007/978-3-319-70494-4_4
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Discussion

This problem is a prototype for studying the kinematics of a fixed-target experiment.
To be more general, we can assume the two masses to be different, with particle
(1) having momentum p and particle (2) at rest. The energy and momenta in the
centre-of-mass frame are given by:

√
s = E∗

1 + E∗
2 =

√
m2

1 + m2
2 + 2E1m2 (1.87)

|p∗| =
√

E∗ 2
1 − m2

1 =
√

E∗ 2
2 − m2

2. (1.88)

The last equation, in particular, implies:

E∗ 2
1 − m2

1 = E∗ 2
2 − m2

2, (E∗
1 + E∗

2 )(E
∗
1 − E∗

2 ) = m2
1 − m2

2,

√
s (E∗

1 − √
s + E∗

1 ) = m2
1 − m2

2 ⇒ E∗
1 = s + m2

1 − m2
2

2
√

s
. (1.89)

An analogous result for E∗
2 can be obtained by changing 1 ↔ 2. Inserting Eq. (1.89)

into the second of (1.87), and symmetrising the expression for 1 ↔ 2 exchange, we
get:

|p∗|2 = 1

2

[
(s + m2

1 − m2
2)

2

4s
− m2

1 + (s + m2
2 − m2

1)
2

4s
− m2

2

]
=

= 1

8s

[
2s2 + 2(m2

1 − m2
2)

2 − 4 s m2
1 − 4 s m2

2

] =

= 1

4s

[
s2 + (m1 − m2)

2(m1 + m2)
2 − 2 s m2

1 − 2 s m2
2

] =

= 1

4s

[(
s + (m1 + m2)

2
) (

s + (m1 − m2)
2
)]

, (1.90)

from which:

|p∗| =
√(

s − (m1 + m2)2
) (

s − (m1 − m2)2
)

2
√

s
=
√

(s − m2
1 − m2

2)
2 − 4m2

1 m2
2

2
√

s
.

(1.91)

A special case is provided by m1 = m2 = m, for which:

|p∗| =
√

s

2

√
1 − 4

m2

s
, E∗ =

√
s

2
, β∗ =

√
1 − 4

m2

s
. (1.92)

Notice that, after doing the algebra, the numerator of Eq. (1.91) assumes a completely
symmetric form under exchange of s ↔ m2

1 ↔ m2
2:
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|p∗| =
√

s2 + m4
1 + m4

2 − 2s2m2
1 − 2s2m2

1 − 2m2
2m2

1

2
√

s
=
√

λ(s, m2
1, m2

2)

2
√

s
(1.93)

where λ(a, b, c) is known as the triangular function. The boost parameter to the
centre-of-mass frame,β, can be easily obtained bynoticing that, in this frame, particle
(2), which has momentum component along the boost direction −|p�| and energy
E∗
2 , has to come to a rest under an inverse boost −β, that is to say:

0 = γ (−|p�| + βE∗
2 ) ⇒ β = |p�|

E∗
2

= β∗
2 , (1.94)

which implies that β is also the velocity of particle (2) in the centre-of-mass frame,
as one would have expected. Besides, by definition of centre-of-mass frame, the two
particles must have equal and opposite momentum under this boost, i.e.:

|p∗| = γ (|p| − βE1) = γ β m2, (1.95)

from which we can derive the two relations:

β = |p|
E1 + m2

, γ = E1 + m2√
s

(1.96)

The latter follows from:

γ = 1√
1 − β2

= E1 + m2√
m2

1 + m2
2 + 2m2E1

= E1 + m2√
s

. (1.97)

Equation (1.96) thus implies that the boost to the centre-of-mass is the velocity of a
“particle” of mass

√
s and total momentum p. Furthermore, combining Eqs. (1.95)

and (1.96), one can relate the centre-of-mass momentum to the momentum in the
laboratory frame as:

|p∗| = γ β m2 = m2
|p|√

s
. (1.98)

Solution

We can use directly Eq. (1.43) to express the velocities in terms of the momenta and
energies. Also, since m1 = m2 = m, we have E∗

1 = √|p∗| + m2 = E∗
2 ≡ E∗. Let’s

define the opening angle by φ. With reference to Fig. 1.5, we then get:

tan θ1 = |p∗| sin θ∗
1

γ (βE∗ + |p∗| cos θ∗)
, tan θ2 = |p∗| sin θ∗

1

γ (βE∗ − |p∗| cos θ∗)
, (1.99)
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Fig. 1.5 Elastic scattering
between two identical
particles of mass m

p1

p′
1

θ1

θ2

p′
2

m m

tan φ = tan (θ1 + θ2) = tan θ1 + tan θ2

1 − tan θ1 tan θ2
=

= 2βγ E∗|p∗| sin θ∗

γ 2(β2E∗2 − |p∗|2) + |p∗|2(γ 2 − 1) sin2 θ∗ (1.100)

By using Eq. (1.94), we see that the first term at the denominator vanishes. The
right-hand side is a monotonously decreasing function of θ∗, hence the minimum of
φ occurs for θ∗ = π

2 . Still using Eq. (1.94), and the first of Eq. (1.96), the expression
can be simplified to:

tan (φmin) = 2γ

γ 2 − 1
= 2

√
1 − β2

β2 = 2
√
1 − |p∗|2/(m + E∗)2
|p∗|2/(m + E∗)2

= 2
√
2m2 + 2mE∗
E∗ − m

.

(1.101)

Finally, using a trigonometric identity, we can further simplify the expression as:

cosφmin = 1√
1 + tan2 φmin

=
√

(E∗ − m)2

E∗2 − 2m E∗ + m2 + 8m E∗ + 8m2 = E∗ − m

E∗ + 3m
.

(1.102)

Problem 1.19 Consider the decay of the K0
S meson into a pair of opposite-charge

pions: calculate the energy and momenta of the charged pions in the K0
S rest frame.

Consider now a monochromatic beam of K0
S decaying as before. Determine the

energy distribution of the charged pions in the laboratory frame as a function of the
beam momentum.

Solution

Since the K0
S particle decays to a pair of particles of identical mass, we can use

Eq. (1.92) with
√

s = mK to derive the energy E∗ and momentum |p∗| of the pions
in the centre-of-mass frame:
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E∗ = mK

2
= 248 MeV, |p∗| = mK

2

√

1 − 4

(
mπ

mK

)2

= 206 MeV, (1.103)

where we have used the PDG values mK = 497 MeV and mπ = 139 MeV [4].
The laboratory energy Eπ of either of the two pions can be expressed in terms of

the centre-of-mass polar angle θ∗ via:

Eπ (cos θ∗) = E∗ γ (1 + ββ∗ cos θ∗) = 1

2

(
E + |p|β∗ cos θ∗) , (1.104)

where E and |p| are the laboratory energy and momentum of the kaon, and β∗ =
|p∗|/E∗ ≈ 0.829 is the centre-of-mass velocity of the pions. Since the K0 is a spin-
0 particle, it’s decay into pions is isotropic in the rest frame, see Problem 1.15.
Furthermore, Eq. (1.104) shows that the energy in the laboratory frame is a linear
function of cos θ∗, so that it’s distribution will be also uniformly distributed in the
range [Eπ (−1), Eπ (1)]:

1

Γ

dΓ

dEπ

=
{

(|p|β∗)−1 if 1
2 (E − |p|β∗) ≤ Eπ ≤ 1

2 (E + |p|β∗)
0 otherwise

(1.105)

Discussion

The fact that an isotropic distribution in the rest frame for a decay 1 → 2 gives rise to
a rectangular distribution for the energy in the laboratory frame holds irrespectively
of the mother energy and of the daughter mass, since it only depends on Eπ being a
linear function of cos θ∗. Notice that the momentum |p| is not uniformly distributed,
since E is not a linear function of |p|, whereas the kinetic energy T = E − m is. If
the mother particle is relativistic, i.e. E � m, and the mass of the daughter particles
is small compared to m, then Eq. (1.105) becomes:

1

Γ

dΓ

dEπ

≈
{

1
Eπ

if 0 � Eπ ≤ E

0 otherwise
(1.106)

For example, the τ lepton has a mass of about 1.7 GeV, and can decay via τ →
π ντ , with mπ , mν � mτ . At colliders, τ leptons are abundantly produced from the
decay of Z0 or W bosons, so that Eτ � 40 GeV � mτ . Although it is a spin-1/2
particle and the EWK dynamics is chiral, see Problem 1.8, one can usually consider
unpolarised ensembles of τ leptons, for example by averaging over the pion charge,
so that the decay distribution in the τ rest frame can be still considered as isotropic.
Then, the energy spectrum of the charged pion features an approximate rectangular
distribution as in Eq. (1.106).
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Another intriguing property of the energy distribution of Eq. (1.105) will be dis-
cussed in Problem 1.20.

Problem 1.20 Show that for a two-body decay B → A a of an unpolarised particle
B of mass mB, into a pair of particles A and a, where the latter is assumed mass-
less, the energy spectrum of a in the laboratory frame has a global maximum at E∗

a
irrespectively of the momentum of B.

Solution

Let’s consider the decay B → A a in the rest frame of B, and let’s denote by θ∗ the
polar angle of a with respect to the direction of flight of B in the laboratory. It follows
that:

Ea = γ E∗
a (1 + β cos θ∗) (1.107)

where γ ≡ γB and β ≡ βB are the gamma-factor and velocity of B in the laboratory
frame. The centre-of-mass energy of a is given by Eq. (1.89), namely E∗

a = (m2
B −

m2
A)/2mA. Since Ea is a linear function of cos θ∗, it follows that

Ea ∈ [γ E∗
a (1 − β), γ E∗

a (1 + β)],
x ≡ Ea

E∗
a

∈ Iγ ≡
[
γ −

√
γ 2 − 1, γ +

√
γ 2 − 1

]
(1.108)

Furthermore, since γ −√γ 2 − 1 < 1 and γ +√γ 2 − 1 > 1 for any γ , it follows that
x = 1 is contained in all intervals Iγ . It is also the only value featuring this property,
since for x �= 1, one can always find a γ such that x /∈ Iγ . Indeed, for a fixed x, the
condition x ∈ Iγ can be obtained by solving the system:

{
x > γ −√γ 2 − 1

x < γ +√γ 2 − 1
⇒ γ >

1

2

(
x + 1

x

)
. (1.109)

The assumption that B is unpolarised implies that Ea has a rectangular distribution,
see Problem 1.19, hence x is uniformly distributed in Iγ . If we assume that the boost
factors of B are described by a distribution g(γ ), the distribution of x will be given
by:

1

Γ

dΓ

dx
=
∫

dγ f (x|γ ) · g(γ ) =
∫ ∞

1
2 (x+ 1

x )
dγ

g(λ)

2
√

γ 2 − 1
. (1.110)
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The derivative of Eq. (1.110) is given by:

∂

∂x

(
1

Γ

dΓ

dx

)
= − g

(
1
2

(
x + 1

x

))

2
√(

1
2

(
x + 1

x

))2 − 1

[
1

2

(
1 − 1

x2

)]
=

= sign(1 − x)

2x
g

(
1

2

(
x + 1

x

))
. (1.111)

Therefore: if g(1) = 0, then x = 1 is the uniquemaximumofEq. (1.110); if g(1) �= 0,
the derivative flips sign at x = 1, hence this point represents a cusp in the distribution
of x. In both cases, x = 1 is a global maximum. An alternative way to convince
oneself that x = 1 is indeed a maximum is to notice that this value is the only one
that is contained by all intervals Iγ , hence it must have the highest probability density.
The same conclusion would hold, under some more restrictive conditions, also for
ma > 0. In the latter case, Eq. (1.109) gets modified to:

x ≡ Ea

E∗
a

∈ Iγ ≡
[
γ −

√
γ 2 − 1

√
γ ∗2 − 1

γ ∗ , γ +
√

γ 2 − 1

√
γ ∗2 − 1

γ ∗

]
, (1.112)

with γ ∗ = E∗
a/ma. The condition 1 ∈ Iγ is then satisfied provided that:

γ −
√

γ 2 − 1

√
γ ∗2 − 1

γ ∗ < 1 ⇔ γ < 2γ ∗2 − 1. (1.113)

As expected, this condition is satisfied for any γ in the limit ma → 0, since
γ ∗ → +∞ and the inequality becomes γ < +∞.

Discussion

This subtle property offers the possibility ofmeasuring themass of the parent particle
mB regardless of both the kinematic of B and A, which plays here no role other than
determining the centre-of-mass energy E∗

a . The latter can be directly measured from
the mode of the distribution of Ea from the relation:

mB = E∗
a +

√
m2

A − m2
a + (E∗

a )2. (1.114)

Figure1.6 shows the simulated spectrum of logEa, for the case where particle a is
the b-jet produced in the decay of a top quark.

Suggested Readings

This problem is inspired by Ref. [8], from which the notation and the mathematical
proof have been also taken. The idea of using the peak position of the energy spectrum
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Fig. 1.6 Fitted logEa
distribution in a simulated
sample of tt̄ events with a
mass hypothesis of
172.5 GeV. The Gaussian fit
yields a logEa peak position
of 4.199 ± 0.002,
corresponding to an
uncalibrated value of
mt = 171.01 ± 0.25 GeV
using Eq. (1.114) (taken
from Ref. [7])
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of the b-jets to measure the mass of the top quark, which decays via t → b W +, has
been first suggested by the same authors and first pursued at the CMS experiment [7].

Problem 1.21 A K∗ − meson with momentum |p| = 5.5 GeV decays via K∗ − →
K− π0. In the rest frame of the mother particle, the K− momentum forms an angle
θ∗ = 55◦ with respect to p. What is the opening angle between the K− and π0

momenta in the laboratory frame?Which are the centre-of-mass angles θ∗
max and θ∗

min
for which the opening angle is, respectively, the largest and smallest?

Solution

We can use the results derived in Problem 1.12. In particular, the opening angle φ

depends on the centre-of-mass angle θ∗ and on the velocity of the mother particle in
the laboratory frame, βK∗ , and the velocities of the two daughter particles in the rest
frame of the mother particle, β∗

K and β∗
π . The velocity and gamma factor of the K∗−

meson in the laboratory frame are respectively given by:

β =
[
1 −

(
mK∗

|p|
)2
]− 1

2

= 0.987, γ =
[
1 +

( |p|
mK∗

)2
] 1

2

= 6.25, (1.115)

where we have used the PDG valuemK∗ = 892MeV [4]. The velocities of the daugh-
ter particles in the rest frame of the mother particle can be computed from Eqs. (1.89)
and (1.91). In order to make the numerical computation less error prone when using
a calculator, it is convenient to write the formula in terms of the dimensionless ratios
rπ ≡ mK/mK∗ = 0.554 and rπ ≡ mπ/mK∗ = 0.151, that is:
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β∗
K,π = |p∗|

E∗
K,π

=
√(

m2
K∗ − (mπ + mK)2

) (
m2

K∗ − (mπ − mK)2
)

m2
K∗ ± m2

K ∓ m2
π

=

=
√(

1 − (rπ + rK)2
) (
1 − (rπ − rK)2

)

1 ± r2K ∓ r2π
=
{
0.502 K

0.906 π
(1.116)

We can then use Eq. (1.67) to derive φ as a function of θ∗, or equivalently use
Eq. (1.44) to calculate θK and θπ separately. Following the latter approach, we get:

tan θK,π = sin 55◦

6.25 ·
(
± cos 55◦ + 0.987

β∗
K,π

) =
{
0.0516 K

0.254 π

φ = atan(0.0516) + atan(0.254) = 17.2◦. (1.117)

Since βK∗ > min{β∗
K , β∗

π }, there must be a maximum opening angle φmax < π ,
whose tangent can be found by numerically maximising Eq. (1.67) with respect to
cos θ∗. By using the numerical routine of Appendix 1.3, we get a value:

argmax {tan φ} = 0.906 ⇒ φmax = 86◦. (1.118)

Bando n. 13705/2010

Problem 1.22 A beam of K+ mesons with energy E propagates along the z-axis.
Consider the decay K+ → μ+νμ with massless neutrinos. Determine:

1. the angular distribution of the muons in the centre-of-mass frame;
2. the polar angle that contains 50% of the neutrinos;
3. the fraction of neutrinos emitted with negative velocity;
4. the beam energy threshold for which all muons move forwards;
5. which are the implications of the weak interaction for the muon helicity when the

latter is emitted forwards or backwards along the z axis.

Solution

1. Since the K+ meson has spin-0, the decay products are isotropically distributed
in the centre-of-mass frame, i.e.:

1

Γ ∗
dΓ ∗

d cos θ∗ dφ∗ = 1

4π
. (1.119)

2. As seen in Problem 1.10, and in particular Eq. (1.56), for massless particles the
polar angle in the laboratory frame, θ , is a monotonously increasing function of
θ∗. Indeed:
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d cos θ

d cos θ∗ = 1 − β2

(1 + β cos θ∗)2
> 0, (1.120)

where β is the K+ velocity in the laboratory frame. Therefore, the transformed to
the laboratory frame of the polar angle θ∗ giving the 50% quantile in the centre-
of-mass frame, which is trivially π/2 for an isotropic decay, will also give the
same quantile in the laboratory frame, since a monotonous mapping preserves
the quantiles. Hence:

θ50% = acos

(
cos π

2 + β

β cos π
2 + 1

)
= acosβ = acos

√
1 −

(mK

E

)2
. (1.121)

3. For the neutrino to be emitted backwards, one has the condition:

pν
z = γ (p∗

z + βE∗
ν ) = γ E∗

ν (cos θ∗ + β) < 0 ⇒ cos θ∗ < −β. (1.122)

Hence, the fraction αB of backward-emitted neutrinos as a function of E is given
by:

αB =
∫ −β

−1
d cos θ∗ 1

Γ

dΓ

d cos θ∗ = 1

2

∫ −β

−1
d cos θ∗ = 1 −

√
1 − (mK

E

)2

2
(1.123)

4. For the muon to always move forward, one needs:

pμ
z = γ (p∗

z + βE∗
μ) = γ E∗

μ(β∗
μ cos θ∗ + β) > 0 ∀θ∗ ⇔ β > β∗

μ,
√
1 −

(mK

E

)2
>

m2
K − m2

μ

m2
K + m2

μ

, E > Eth ≡ mμ

2

(
1 +

(
mK

mμ

)2
)

= 1.20 GeV.

(1.124)

5. The V −A structure of the charged-weak interaction implies that the neutrino is a
pure left-handed particle, and since it is massless, it is also in a helicity eigenstate
with eigenvalue hν = −1/2, see Problem 1.6. Since the K+ is a spin-0 particle,
the muon and neutrino needs to be in opposite helicity eigenstate in the centre-of-
mass frame, as to conserve the angular momentum in the z direction. If the muon
moves backwards along z in the laboratory frame, then it must have hμ = −1/2
as to compensate for the forward-moving neutrino with hν = −1/2. If instead
the muon moves forward, we should consider separately the case where the K+
energy is below the threshold Eth of Eq. (1.124) (in which case, the neutrino
moves backwards and hence hμ = −1/2), from the case E > Eth. In the latter
case, the neutrino can move either backwards or forwards, depending on the
observed muon momentum, and then hμ can take both values of ±1/2.



1.1 Lorentz Transformations 35

Problem 1.23 Consider the decay chain C → B b, followed by B → A a, where a
and b are massless particles, whereas A, B, and C have non-zero masses mA, mB, and
mC , respectively. Determine the lower and upper bounds on the invariant mass mab

as a function of the mass of the three other particles. Assume now that the decay of B
is isotropic in its rest frame: what is the expected distribution of mab in the laboratory
frame?

Solution

We study the problem in the rest frame of C, where b has a fixed energy: since mmax
ab

is an invariant, the results obtained in this particular framewill hold true for any other
frame. The minimum invariant mass mmin

ab corresponds to a and b moving collinear,
which can always happen if ma = mb = 0, see Problem 1.10. Hence: mmin

ab = 0.
Themaximum invariantmass corresponds instead toa andbmovingback-to-back,

since this configuration will also maximise the energy of a. We can use Eq. (1.89) to
express the energy of b, which is identical to the momentum of B since the former is
assumed massless:

Eb = |pB| = m2
C − m2

B

2mC
, EB = m2

C + m2
B

2mC
. (1.125)

The same equation with the replacement C → B and B → A will also give the
energy E∗

a of particle a in the rest frame of B. We can transform it back to the C rest
frame by applying a boost of magnitude βB, which is the velocity of B in the rest
frame of C:

Emax
a = γB E∗

a (1 + βB) =
(

m2
C + m2

B

2mCmB

)(
m2

B − m2
A

2mB

)(
1 + m2

C − m2
B

m2
C + m2

B

)
=

=
(

mC

mB

)
m2

B − m2
A

2mB
, (1.126)

from which we get the result:

mmax
ab = 2

√
Emax

a Eb =
√

(m2
C − m2

B)(m2
B − m2

A)

mB
. (1.127)

To study the distribution of mab, we first write it explicitly as a function of the
kinematics of a and b:

m2
ab = 2Ea Eb (1 + cos θa), (1.128)

where θa is the angle of a with respect to the direction of B in the rest frame of C,
see Fig. 1.7. Then, we write cos θa as a function of Ea, as to obtain an expression
which depends only on the latter. We do so because we know that Ea is uniformly
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C

θa

pa
pb

B
A

b

a

Fig. 1.7 Representation of the decay chain C → B b, followed by B → A a in the rest frame of C

distributed, if such is the angular distribution in the centre-of-mass frame, see e.g.
Eq. (1.105). Given that E∗

a is constant, we get:

E∗
a = γB Ea (1 − βB cos θa) , cos θa = γB Ea − E∗

a

βB γB Ea
= EB Ea − mB E∗

a

|pB|Ea
.

(1.129)

Inserting this expression into Eq. (1.128) we get:

m2
ab = 2Ea Eb

( |pB| Ea + EB Ea − mB E∗
a

|pB| Ea

)
= 2Eb

|pB|
[
Ea (EB + |pB|) − mB E∗

a
] =

= 2mC Ea − (m2
B − m2

A), (1.130)

where the last equality has been obtained by means of Eqs. (1.89) and (1.125). It is
easy to verify that Eq. (1.128) can be recovered by using the expression at the right-
hand side of Eq. (1.126). Since m2

ab is a linear function of Ea, which is uniformly
distributed, it follows that mab has a triangular distribution:

1

Γ

dΓ

dmab
=
⎧
⎨

⎩

( √
2

mmax
ab

)2
mab if 0 ≤ mab ≤ mmax

ab

0 otherwise
(1.131)

Discussion

Searching for end-points in the invariant mass spectrum of light particles provides
an experimental technique to measure new heavy particles that decay to intermediate
states, for example the supersymmetric partners of the SMparticles. Figure1.8 shows
the spectrum of opposite-sign dilepton masses measured by the CMS experiment in
proton-proton collisions at

√
s = 8 TeV [9]. A putative signal like the one discussed

in this exercise would manifest itself as an edge in the mass distribution (dashed
green line). Furthermore, the edge location provides a constraint on the mass-scale
of the new particles as shown by Eq. (1.127).
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Fig. 1.8 Invariant mass
distribution of same-flavour
opposite-sign lepton pairs
(e+e−, μ+μ−) measured by
the CMS experiment in pp
collisions at

√
s = 8 TeV.

The contribution from a
putative signal is shown as a
green dashed-line histogram
featuring a peculiar
triangular shape: the
end-point of the distribution
is related to the particle
masses. Notice that no other
known SM process produces
a similar invariant mass
shape (taken from Ref. [9])
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Problem 1.24 A non-relativistic particle of mass m and initial velocity v scatters
elastically against a particle of mass A m, where A is a positive coefficient, assumed
to be initially at rest. Determine, as a function of A, what is the range of kinetic
energy T ′ in which the projectile particle can be found after the scattering.

Solution

We first consider the generic scattering in the centre-of-mass frame. Here, the kine-
matics is fully specified by the polar angle θ∗ with respect to v. The velocity of the
centre-of-mass in the laboratory frame, vCM, is given by:

rCM = m · r1 + A m · rA

(A + 1) m
⇒ vCM = v

A + 1
. (1.132)

In the c.o.m frame, the velocity of the incoming particle before and after the collision
are v∗ and v∗ ′, and since the collision is elastic, we have:

|v∗| = |v∗ ′| = |v − vCM| = A

A + 1
|v|. (1.133)
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Expressing v′ back into the laboratory frame, we obtain:

v′ = v∗ ′ + vCM, |v′|2 = |v∗ ′|2 + |vCM|2 + 2|v∗ ′||vCM| cos θ∗,

|v′|2 =
(

A

A + 1

)2

|v|2 +
(

1

A + 1

)2

|v|2 + 2A

A + 1
|v|2 cos θ∗,

T ′ = A2 + 1 + 2A cos θ∗

(A + 1)2
T ⇒ T ′ ∈

[
T

(
A − 1

A + 1

)2

, T

]
. (1.134)

Equation (1.134) implies that the maximum energy transfer, i.e. the largest recoil
energy transferred to the target particle, is:

ΔTmax = T − Tmin =
[
1 −

(
A − 1

A + 1

)2
]

T = 4A

(A + 1)2
T . (1.135)

Let’s now specify the relative energy exchange for the cases A � 1, A = 1, and
A � 1:

ΔTmax

T
=

⎧
⎪⎨

⎪⎩

4/A if A � 1

1 if A = 1

4A if A � 1

(1.136)

In particular,ΔTmax/T → 0 forA � 1, ismaximal forA = 1, and is proportional toA
for low values of the targetmass. In particular, the last limit implies that themaximum
velocity of the target after the scattering is twice the velocity of the incoming particle.
This is easy to prove, since we have:

1

2
(A m)|v′

A|2 = 4A · 1
2

m|v|2 ⇒ |v′
A| = 2 |v|. (1.137)

Discussion

Thedependenceof the relative energy transfer on themass ratio between the projectile
and the target has important implications on the possibility of slowing-down parti-
cles by elastic collisions, like e.g. neutrons produced in fission reactions. Indeed,
if A � 1, an elastic scattering implies only a very small energy loss per binary
collision: massive elements are not efficient velocity moderators. On the contrary,
elements with comparable mass are more effective in reducing the energy of the
incoming particles, since the energy transfer ΔT can reach larger values, as for from
Eq. (1.134), so that it will take on average fewer binary collisions to achieve the
desired moderation. For example, H2O is a good neutron moderator thanks to the
presence of free protons in the molecule.
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Suggested Readings

For further details on this subject, the reader is addressed to Sect. 2.8.1 of Ref. [10].

Problem 1.25 Consider the elastic scattering of amassless particle against a particle
of mass m, initially at rest. Determine the largest energy transfer from the massless
particle to the target.

Solution

Differently from Problem 1.24, the initial particle is now. It is most convenient to
use the covariant formalism. For this purpose, let the four-momenta of the massless
particle before and after the scattering be denoted by k = (E,k) and k′ = (E′,k′),
respectively, and let θ the angle between the two momenta. The target initially has
four-momentum P = (m, 0), which becomes P′ after the scattering. Conservation of
energy-momentum implies:

k + P = k′ + P′, P′ = k − k′ + P, m2 = m2 + 2kk′ + 2m(E − E′),
0 = −2EE′(1 − cos θ ′) + 2m(E − E′) = E′ [m + (1 − cos θ)E] − m E,

E′ = E

1 + E
m (1 − cos θ)

. (1.138)

The energy E′ is at a minimum for back-scattering, cos θ = −1, and the correspond-
ing energy transfer is:

ΔTmax = E − E′(θ = π) = E

(
1 − 1

1 + 2E/m

)
= E

2E/m

1 + 2E/m
≡ E

2 k

1 + 2 k
.

(1.139)

with k ≡ E/m.

Discussion

The Compton scattering of a photon against atomic electrons falls into this class
of problems. The existence of a maximum energy transfer leads to a characteristic
threshold in the energy distribution of the recoil electrons, called Compton peak, see
Sect. 2.1 for more details.

Suggested Readings

For further details on this subject, the reader is addressed to Sect. 2.7 of Ref. [10].

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Problem 1.26 A particle of mass M and momentum p interacts elastically with a
particle of mass m, initially at rest. Determine the maximum possible energy transfer
involved in the scattering. In particular, specialise the formula for the case of a non-
relativistic particle, M � |p|, and for the case of an initial massless particle, M = 0.

Discussion

The results derived in this exercise will be useful when discussing the energy lost by
a charged particle in the collision with the atomic electrons, as described by the so-
called Bethe formula, see Eq. (2.1). The maximum energy transfer to an atomic elec-
tron, usually denoted by Wmax, provides a natural energy scale for this kind of prob-
lems, the other being the work needed to extract an electron from its orbital. It is also
interesting to see how the maximum energy transfer in the non-relativistic approxi-
mation and in the Compton scattering, whose derivation Problems 1.24 and 1.25 was
based on specific assumptions (classical kinematics for the former, massless initial
particle for the latter), can be obtained as a special case of a more general formula,
valid in all regimes, provided that m > 0 (otherwise there would be no frame where
the target is at rest).

Solution

It’s convenient to study the kinematics of the scattering in the centre-of-mass frame.
Here the projectile has a momentum p∗ and the target has opposite momentum
−p∗. The largest energy transfer to the target in the laboratory frame corresponds
to its back-scattering in the centre-of-mass frame. We can then calculate the corre-
sponding energy in the laboratory frame by making a Lorentz transformation with
boost parameter β. We can use the results obtained in Problem 1.18, and in partic-
ular Eqs. (1.89), (1.96), and (1.98), to express all quantities in terms of the energy-
momentum in the laboratory frame. The projectile energy in the laboratory frame is
given by E = √|p|2 + M2. In the laboratory frame, the target energy for the case of
back-scattering is given by:

E2 = γ (E∗
2 + β|p∗|) = E + m√

s

(
s − M2 + m2

2
√

s
+ |p|

E + m
|p| m√

s

)
,

= E + m√
s

(
2m2 + 2Em√

s
+ m|p|2

(E + m)
√

s

)
= m

s

(
(E + m)2 + |p|2) ,

= m

s

(
E2 + 2mE + m2 + |p|2 + M2 − M2

) = m

s

(
s + 2|p|2)

= m

(
1 + 2

|p|2
s

)
. (1.140)

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Hence, the maximum energy transfer is given by:

ΔTmax = 2m |p|2
s

= 2m (βpγp)
2

1 + (m/M)2 + 2 (m/M)
√

(βpγp)2 + 1
. (1.141)

Let’s now specialise Eq. (1.141) to the following cases:

1. M � |p|. In this approximation, E ≈ M and |p| ≈ M|v|, where v is the projectile
velocity the laboratory frame. Hence:

ΔTmax ≈ 2m (M|v|)2
(M + m)2

=
(
1

2
M|v|2

)
4

m/M

(m/M + 1)2
, (1.142)

which agrees with Eq. (1.135) since A = m/M in the current notation. It’s worth
noticing that no assumption was made on the target being relativistic or not after
the scattering. Indeed, Eq. (1.135) was derived under the sole assumption that
only the projectile is non-relativistic, while the target plays no role other than to
specify the boost parameter.

2. M = 0. In this case, |p| = E and Eq. (1.141) becomes:

ΔTmax = 2m E2

m2 + 2m E
= E

2E/m

1 + 2E/m
, (1.143)

which agrees with Eq. (1.139). Figure1.9 shows the ratio ΔTmax/T between the
maximal energy transfer and the kinetic energy of the projectile as a function of
E/m. Four different cases are considered: γp ≈ 1, γp = 2, γp = 10, and the case
M = 0.

Fig. 1.9 Ratio ΔTmax/T
between the maximal energy
transfer and the total energy
of the projectile as a function
of E/m, where m is the mass
of the target. Four different
cases are considered: γp ≈ 1
(non-relativistic limit),
γp = 2, γp = 10, and the
case of massless projectile,
M = 0
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Suggested Readings

The reader is addressed to Chap.33 of Ref. [4], the PDG review dedicated to the
passage of particles through matter, where the maximum energy transfer in a single
collision is discussed. See also Sect. 2.2.2 of Ref. [10].

Problem 1.27 A charged particle of unknown mass M and momentum |p| much
larger than the electron mass me, crosses a detector. At a certain depth inside the
active material, an atomic electron is knocked out by the incoming particle, for
which the polar angle θe with respect to p and the energy Ee are measured. Show that
the mass M can be estimated from the following formula:

M = |p|
[

Ee + me

Ee − me
cos2 θe − 1

] 1
2

. (1.144)

Solution

Let the four-momentum of the unknown particle be P, and the four-momenta of the
electron before and after the scattering be k and k′. After the scattering, the incoming
particle will have four-momentum P′. With a convenient choice of the reference
frame, we can write:

P = (
√

|p|2 + M2, |p|, 0, 0)
k = (me, 0, 0, 0)

k′ = (Ee,

√
E2

e − m2
e cos θe,

√
E2

e − m2
e sin θe, 0)

P′ = P + k − k′

(1.145)

Squaring the last of Eq. (1.145), we get rid of the unknown kinematics, obtaining:

P′ 2 = P2 + 2Pk − 2Pk′ + k2 + k′ 2 − 2kk′,

M2 = M2 + 2(me − Ee)
√

|p|2 + M2 + 2|p|
√

E2
e − m2

e cos θe + 2me(me − Ee),

0 =
√

|p|2 + M2 − |p|
√

Ee + me

Ee − me
cos θe + me,

0 =
√

1 + M2

|p|2 −
√

Ee + me

Ee − me
cos θe + me

|p|

M ≈ |p|
[

Ee + me

Ee − me
cos2 θe − 1

] 1
2

= |p|
[

Te + 2me

Te
cos2 θe − 1

] 1
2

, (1.146)
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where the factor me/|p| has been neglected, and we have introduced the kinetic
energy Te = Ee − me.

Discussion

This formula was used by Leprince-Ringuet and collaborators to estimate themass of
a new long-lived particles discovered in cosmic rays. Amagnetised nuclear emulsion
had been exposed to cosmic rays on the top of the french Alps. Among the others, it
recorded an event that could be interpreted as a charged particle, identified as such
by the bubble density of the track impressed on the emulsion, transferring a sizable
fraction of its momentum to a single atomic electron, a so-called δ-ray. The latter
was identified as a spiraling track originating from the kink of the primary track, and
its momentum, like the momentum of the unknown particle, could be measured from
the radius of curvature of the track. With these measurements at hand, the mass of
the unknown could be measured with enough accuracy to establish the discovery of
a new particle, later identified as the charged kaon.

Suggested Readings

The reader is addressed to the paper byLeprince-Ringuet andCrussard [11], reporting
the first evidence for a particle with a mass of about one-thousand times the electron
mass contained in cosmic rays. The rather precise estimation of the particle mass
was based on the kinematics of a fully-reconstructed event. This experiment is also
discussed in Ref. [12].

Problem 1.28 A high-energy positron beam on a fixed-target experiment can pro-
duce the reaction e+ e− → f f̄ , where f and f̄ have the same mass M. Show that M
can be estimated using the formula:

M = 1

2

[
2me|p|

(
1 −

(
θ1 − θ2

θ1 + θ2

)2
)(

1 − |p|
2me

θ1θ2

)] 1
2

, (1.147)

where |p| is the beam momentum, assumed to be much larger than me and M, and θi

are the polar angles of f and f̄ with respect to the beam direction.

Solution

Let’s denote the momenta of the outgoing particles by p1 and p2. Momentum con-
servation along the beam and its orthogonal axis implies:

{
|p1| sin θ1 = |p2| sin θ2

|p1| cos θ1 + |p2| cos θ2 = |p| (1.148)
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We now work in the assumption θi � 1, which is indeed justified if |p| � me, M
because of the large boost of the centre-of-mass frame, see Problem 1.15. With this
approximation:

{|p1|θ1 = |p2|θ2
|p1|(1 − θ2

1
2 ) + |p2|(1 − θ2

2
2 ) = |p|

(1.149)

Inserting the first equation into the second:

|p2|
[
θ2

θ1
− θ1θ2

2
+ 1 − θ2

2

2

]
= |p2|

[
θ1 + θ2

θ1
+ O(θ2

i )

]
= |p|,

⇒
{|p1| = θ2

θ1+θ2
|p|

|p2| = θ1
θ1+θ2

|p| (1.150)

Let’s now denote the four-momentum of the positron, electron, and of two outgoing
particles by k, P, p1, p2, respectively. We can treat the electron/positron as massless.
Energy-momentum conservation implies:

p1 + p2 = k + P, 2M2 + 2p1p2 = 2me|p|,
M2 + (

√
|p1|2 + M2)(

√
|p2|2 + M2) − |p1||p2| cos(θ1 + θ2) = me|p|,

M2 +
[(

|p1| + M2

2|p1|
)(

|p2| + M2

2|p2|
)]

− |p1||p2|(1 − (θ1 + θ2)
2

2
) = me|p|,

M2

[
1 + 1

2

( |p2|
|p1| + |p1|

|p2|
)]

= me|p| − |p2||p2| (θ1 + θ2)
2

2
,

M2

[
1 + 1

2

(
θ1

θ2
+ θ2

θ1

)]
= me|p|

(
1 − |p|

2me
θ1θ2

)
,

M2 (θ1 + θ2)
2

2θ1θ2
= me|p|

(
1 − |p|

2me
θ1θ2

)
,

2M2

[
1 −

(
θ1 − θ2

θ1 + θ2

)2
]−1

= me|p|
(
1 − |p|

2me
θ1θ2

)
,

M = 1

2

[
2me|p|

(
1 −

(
θ1 − θ2

θ1 + θ2

)2
)(

1 − |p|
2me

θ1θ2

)] 1
2

. (1.151)

Discussion

This formula was used by the NA7 Collaboration in a fixed-target experiment
aiming at measuring the pion form factor in the time-like region in the range
0.1 < q2/GeV2 < 0.18, where q2 = 2me|p| [13]. These values of q2 correspond to
beam energies ranging from 100 up to 175 GeV. The experimental apparatus con-
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sisted in a liquid hydrogen target followed by a planes of MWPC, see Problem 2.52,
giving an angular resolution of 0.02 mrad for particles emerging from the target
within 7 mrad from the beam direction. A magnetic spectrometer, complemented by
electromagnetic calorimeters, allowed to separate electrons/positrons from muons
and pions. The latter two were further separated by performing an angular analysis
of the two polar angles θ1 and θ2, since the two angles are correlated by themass of the
produced particle. The comparison between the cross sections for e+ e− → μ+ μ−
and e+ e− → π+ π− allowed to extract the pion form factor Fπ (q2) in the q2 region
corresponding to the available beam energies.

Suggested Readings

The reader is addressed to the NA7 paper [13], where the angular analysis used to
disentangle between pions and muons is discussed in detail.

Problem 1.29 The rapidity of a particle of momentum p and mass m is defined as:

y = 1

2
ln

(
E + pz

E − pz

)
. (1.152)

1. How does y transform under a boost β = βez?
2. Write down the phase-space measure d3p/Ep in terms of new set of variables

(|pT|, φ, y), where |pT|2 = p2x + p2y and φ is the azimuthal angle around the
z-axis.

3. Show that, in the limit |p| � m, the rapidity reduces to the purely geometrical
quantity, η, called pseudorapidity. Express η in terms of the polar angle θ .

Solution

We first derive a set of equations that will prove useful in the following. The rapidity
y can be also expressed as:

y = 1

2
ln

(
E + pz

E − pz

)
,

pz

E
= ey − e−y

ey + e−y
= tanh y, y = atanh

(pz

E

)
. (1.153)

By introducing the transverse mass mT ≡ √|pT|2 + m2, we also get:

y = 1

2
ln

(
E + pz

E − pz

)
= 1

2
ln

(
(E + pz)

2

E2 − p2z

)
= ln

(
E + pz

mT

)
,

mTey − pz =
√

m2
T + p2z , −2pze

y = mT(1 − e2y), pz = mT sinh y. (1.154)

If the particle momentum p is aligned with the z-axis, Eq. (1.153) gives:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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y = 1

2
ln

(
1 + βp

1 − βp

)
= atanhβp, (1.155)

from which:

βp = tanh y, γp = cosh y βpγp = sinh y. (1.156)

1. After a boostβ = βez, the rapidity expressed in the new reference frame becomes:

y′ = 1

2
ln

(
E′ + p′

z

E′ − p′
z

)
= 1

2
ln

(
γ (E − βpz) + γ (−βE + pz)

γ (E − βpz) − γ (−βE + pz)

)
=

= 1

2
ln

((
E + pz

E − pz

)(
1 − β

1 + β

))
= y − 1

2
ln

(
1 + β

1 − β

)
= y − atanhβ,

(1.157)

so that the difference Δy between the rapidity of two particles is an invariant
under longitudinal boosts, as are differences between azimuthal angles, Δφ.

2. We want to find the Jacobian J = |∂(px, py, pz)/∂(|pT|, φ, y)| of the transforma-
tion:

⎧
⎪⎨

⎪⎩

px = |pT| cosφ

px = |pT| sin φ

pz = √m2 + |pT|2 sinh y

(1.158)

To this purpose, we first notice that dpx dpy = |pT|d|pT| dφ, so that all we are left
to do is to compute ∂pz/∂y. By using the fact that ∂Ep/∂pi = pi/Ep, we get:

∂y

∂pz
= 1

2

(
Ep − pz

Ep + pz

)
(pz/Ep + 1)(Ep − pz) − (Ep + pz)(pz/Ep − 1)

(Ep − pz)2
= 1

E p
,

(1.159)

hence:

dp
Ep

= |pT|d|pT| dφ dy = 1

2
d|pT|2 dφ dy = π d|pT|2 dy (1.160)

The last equality in Eq. (1.160) holds under integration over the azimuthal angle.
3. Let’s now consider the case E � m. The momentum |p| can be Taylor-expanded

around E to give:

y = 1

2
ln

E + E cos θ − m2

2E2 cos θ + . . .

E − E cos θ + m2

2E2 cos θ + . . .
≈ 1

2
ln

(
1 + cos θ

1 − cos θ

)
= 1

2
ln

(
cos2 θ

2

sin2 θ
2

)
=
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= − ln

(
tan

θ

2

)
≡ η (1.161)

From Eq. (1.161), we also get two more useful trigonometric relations:

η = 1

2
ln

(
1 + cos θ

1 − cos θ

)
= atanh (cos θ), cos θ = tanh y, sin θ = 1

cosh y
.

(1.162)

Discussion

Rapidity is a useful variable in hadron colliders thanks to its transformation prop-
erties: a partonic differential cross section dσ/dy, computed in any reference frame
(e.g. the centre-of-mass frame of the parton-parton scattering), has the same form
in any other frame, provided one replaces y by the linearly transformed value as for
Eq. (1.157).

Differential cross sections at hadron colliders are often forward-peaked due to the
large longitudinal momentum of the initial-state partons, see Problem 1.15. When
expressed in terms of the rapidity, differential cross sections become more smooth
for large boost factors γ . Indeed, for an isotropic process in the centre-of-mass frame,
and assuming y ≈ η, we have:

dσ

dy
= dσ

d cos θ

∣∣∣∣
d cos θ

dy

∣∣∣∣ =
1

γ 2

1

(1 − β cos θ)2
dσ

d cos θ∗ · d tanh y

dy
=

= 1

2γ 2

1

(1 − β tanh y)2
1

cosh2 y
=

= 2

γ 2

1

e2y(1 − β)2 + e−2y(1 + β)2 − 2(1 + β2) + 4
, (1.163)

where we have used Eq. (1.161). This expression simplifies in the limit β → 1 to:

dσ

dy
≈ 2

γ 2

1

(1 − β)2e2y + 4e−2y
, (1.164)

which goes to zero for y � 1 and has a maximum at y = ln(2γ ). Figure1.10 shows
dσ/d cos θ and dσ/dy, superimposed on the same axis for illustration purposes. A
comparison between the two shows that, for a scattering process characterised by a
large boost factor γ , the differential cross section in y is a smooth and broad function,
whereas the differential cross section in cos θ is squeezed around cos θ = 1.

Another reason of interest for y (or η) at hadron colliders is due to the fact that a
variety of soft processes, like the productions of particles in minimum bias hadron-
hadron collisions, turns out to be almost uniformly distributed in η, see e.g. by
Fig. 1.11. This variable then becomes the relevant metric when designing a detector
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Fig. 1.10 Comparison
between the differential
cross section dσ/d cos θ and
dσ/dy for a scattering
process which is isotropic in
the centre-of-mass frame,
superimposed on the same
axis for illustration. The
boost factor of the
centre-of-mass is taken to be
γ = 5

Fig. 1.11 Distributions of
the pseudorapidity density of
charged hadrons in the
region |η| < 2 in inelastic pp
collisions at 13 TeV
measured in data (markers)
and predicted by two of LHC
event generators (curves).
This plot has been taken
from Ref. [14]

for occupancy and radiation hardness.

Problem 1.30 Write down the invariant mass m2
12 of two particles with four-

momentum p1 and p2 in terms of their transverse momenta pT, transverse mass
mT, and rapidity y with respect to the same axis. Find out an approximate formula
for m12 valid in the case that the mass of the two particles is small compared to their
energy and the momenta are almost collinear.

Solution

We can replace the canonical variables by the transverse variables by means of
Eq. (1.154), giving:
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m2
12 = m2

1 + m2
2 + 2(E1E2 − p1 · p2) = m2

1 + m2
2+

+ 2
[
mT 1 (ey1 − sinh y1) mT 2(e

y2 − sinh y2) − mT 1 mT 2 sinh y1 sinh y2 − pT 1 · pT 1
]

= m2
1 + m2

2 + 2

[
mT 1 mT 2

(
ey1ey2 − ey2 − e−y2

2
ey1 − ey1 − e−y1

2
ey2

)
− pT 1 · pT 2

]

= m2
1 + m2

2 + 2
[
mT 1 mT 2 cosh(y1 − y2) − pT 1 · pT 2

]
. (1.165)

In the limit |pi| � mi and θ12 � 1, we have:

m12 ≈

⎡

⎢⎢⎣2pT 1 pT 2

⎛

⎜⎜⎝cosh(Δη)︸ ︷︷ ︸
1+ Δη2

2 +...

− cos(Δφ)︸ ︷︷ ︸
1− Δφ2

2 +...

⎞

⎟⎟⎠

⎤

⎥⎥⎦

1
2

≡ √
pT 1 pT 2 R12, (1.166)

where we have exploited the fact that yi → ηi in this limit, see Problem 1.29, and
we have introduced the Euclidean metric R12 in the (η, φ) space, defined by:

R12 =
√

(η1 − η2)2 + (φ1 − φ2)2. (1.167)

Discussion

The Euclidean metric Rij in the (η, φ) space is widely used at hadron colliders to
define the geometric “distance” between two particles. Jet-clustering algorithm often
rely on Rij to quantify the distance between two particles such that they can be asso-
ciated with the same jet. The level of isolation of a particle is usually defined by
energy collected within a cone of radius R centered around the particle direction.

Suggested Readings

For an application of the R metric in jet-clustering algorithms, the reader is addressed
to Ref. [15].

Problem 1.31 A particle of mass M and momentum p parallel to the z-axis is pro-
duced at the interaction point of an accelerator and then decays to a pair of identical
particles of mass m. The interaction point is surrounded by a cylindrical detector
around the z-axis, whose geometrical coverage is however limited to the pseudora-
pidity region |η| ≤ ηacc. Determine the largest rapidity of the mother particle for
which the experiment is sensitive to the mother particle, assuming two definitions of
acceptance:

1. at least one of the daughter particles is within acceptance;
2. both daughter particles are within acceptance.
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Solution

Since the problem has cylindrical symmetry, it’s enough to consider the case pz > 0
and get an upper bound on y: symmetry will then imply that the same bound, in
absolute value, will hold for |y|. The velocity β∗ of the daughter particles in the
centre-of-mass frame in given by Eq. (1.92) with

√
s = M, while the velocity of

the mother particle in the laboratory frame is β, and the rapidity is y = atanhβ, see
Eq. (1.155).

If β < β∗, it is always possible to find a polar angle θ∗ in the centre-of-mass
frame such that one of the two particles emerges at an angle larger than θacc ≡
2 tan−1

(
e−ηacc

)
in the laboratory frame, see e.g. Problem 1.10. Since the other particle

is emitted at an angle π − θ∗ in the centre-of-mass frame, it will emerge at an even
larger polar angle in the laboratory frame: the experiment therefore is sensitive to
a non-zero fraction of decays up to y = atanhβ∗, regardless of the definition of
acceptance.

When β > β∗, the polar angle θ is bounded by a maximum angle θmax satisfying
Eq. (1.49). The condition that at least one of the daughter particles is within the
detector acceptance amounts to require

θacc ≤ max{θ1, θ2} ≤ θmax. (1.168)

By using a trigonometric identity and Eq. (1.47), the condition that none of the
daughter particles fall within the acceptance translates to θmax < θacc, or:

− ln

(
tan

θmax

2

)
= ln

tan θmax√
1 + tan2 θmax − 1

= ln

1
γ

β∗√
β2−β∗2

√
1 + 1

γ 2
β∗2

β2−β∗2 − 1
=

ln
γ ∗β∗

γβ − γ γ ∗√β2 − β∗2 = ln
γ ∗β∗

sinh y − γ ∗√tanh2 y − β∗2 cosh y
> ηacc, (1.169)

where Eq. (1.156) has been used to express γ and βγ in terms of the rapidity y.
To obtain the maximum rapidity y such that both particles have θ > θacc, we

notice that θ∗ = π/2 plays a special role, since:

• if θ∗ ∈ [0, π/2], then θ1 ≤ θ(θ∗ = π
2 ) ≡ θ⊥;

• if θ∗ ∈ (π/2, θ∗
max], then θ1 > θ⊥, but θ2 < θ⊥;

• if θ∗ ∈ (θ∗
max, π), then θ2 < θ⊥.

Hence, in order to have both daughter particles within the acceptance, one needs:

θacc ≤ min{θ1, θ2} ≤ θ⊥. (1.170)

The condition that none of the daughter particles fall within the acceptance translates
to θ⊥ < θacc, or:
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Fig. 1.12 Maximum
detector pseudorapidity ηacc
as a function of the particle
rapidity ymax such that the
detector is sensitive to
y > ymax, for two definitions
of acceptance: requiring that
both daughter particles have
η < ηacc (solid curve) or
requiring that at least one has
η < ηacc (dashed curve)

− ln

(
tan

θ⊥
2

)
= ln

tan θ⊥√
1 + tan2 θ⊥ − 1

= ln
β∗/γβ√

1 + β∗2
γ 2β2 − 1

=

= ln
β∗

√
sinh2 y + β∗2 − sinh y

> ηacc. (1.171)

Figure1.12 shows a graph of the functions at the left-hand side of Eqs. (1.169)
and (1.171) for a few values of β∗. The case β∗ = 1 (massless particles) corresponds
to y < ηacc: the maximum particle rapidity for which both daughter particles are
within the acceptance coincides with the pseudorapidity range of the detector. For
smaller centre-of-mass velocities, the maximum rapidity becomes smaller than ηacc.

Discussion

Although we have arrived at an analytical result, this exercise offers an example of
how problems in particle physics are often better tackled by usingMonte Carlometh-
ods. Indeed, the problem could have been studied by aMCprogram that (1) generates
particle decays in the centre-of-mass for random values of θ∗ and for discrete values
of β∗, (2) applies the Lorentz boost to the laboratory frame for some values of β,
and (3) saves the values (η1, η2) in a binned 2D-histogram, or in a n-tuple. For a
sufficiently large number of toy events, we can then get the acceptance map for the
tested values of (β, β∗) by studying the joint distribution of (η1, η2).

Problem 1.32 A beammade of pions and muons of momentum |p| = 170 MeV are
produced from a short proton pulse against a fixed target. The beams are detected
by a detector located d = 21 m downstream of the primary target. Determine which
fraction of undecayed pions and muons arrives to the detector, and the difference
between the time of flight and kinetic energy of the two particles.
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Discussion

Unstable particles are associated with a mean life-time τ , defined as the inverse of
the decay probability per unit of proper time, i.e. the time measured in the rest frame
of the particle. It is customary to define particle any quantum state with τ above
some conventional lower bound (e.g. ∼10−18 s), while states with smaller lifetimes
are more frequently referred to as resonance, and the natural width Γ = �/τ , is
reported instead. In some cases, it is more convenient to quote the length cτ in place
of τ . While τ is a constant, a time interval is however not a Lorentz invariant, and
one often wants to express a survival probability, which, for the proper time obeys
an exponential law with time constant τ , in a different reference frame, like the lab-
oratory frame where particles have |p| > 0.

Solution

In the rest frame of an unstable particle, the probability P(t∗ | τ) that the particle
survive up to time t∗, given that at time t∗ = 0 it has not decayed, is provided by the
cumulative of the exponential p.d.f.:

P(t∗ | τ) = exp
(−t∗/τ

)
. (1.172)

In our case, we need to compute the probability that the beam particles have survived
over the time t that takes them to travel the whole length d in the laboratory frame.
This time interval corresponds to a proper time:

t∗ = t

γ
= 1

γ

(
d

βc

)
= m d

m βγ c
= m

|p|d. (1.173)

It is easy to see that a consistent use of cτ together with masses in units of GeV/c2

and momenta in units of GeV/c gives the correct numerical result:

exp

(
− m

|p|
d

τ

)
=
{
exp

(− 106 MeV
170 MeV

21 m
6.6×102 m

) = 0.98 μ

exp
(− 139 MeV

170 MeV
21 m
7.8 m

) = 0.11 π
(1.174)

where we used the values cτ = 6.6 × 102 m for muons and 7.8 m for pions, and
masses mμ = 106 MeV and mπ− = 139 MeV [4].

Finally we can compute the difference between the TOF for the two beams, which
is given by:

t = d

βc
= d

c

√

1 +
(

m

|p|
)2

= 21 m

3 × 108 m/s
·
{
1.18 = 82.5 ns μ

1.29 = 90.4 ns π
(1.175)
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from which |Δt| = 8.2 ns. The kinetic energy is given by:

T = E − m = m

⎡

⎣
√

1 +
( |p|

m

)2

− 1

⎤

⎦ =
{
106 MeV · 0.89 = 94.3 MeV μ

139 MeV · 0.58 = 80.6 MeV π

(1.176)

from which |ΔT | = 14.1 MeV.

Bando n. 18211/2016

Problem 1.33 A neutrino beam is produced by a 120 GeV proton accelerator. A
magnetic selector filters positively charged particles ofmomentum |p| = 20±5GeV,
which then decay inside a pipe filled with helium. We want the beam to be as pure
as possible in νμ. Estimate the length of the pipe and at least one process that can
reduce the beam purity.

Solution

The selected beam consists of π+ andK+. Bothmesons decay with lifetimes of order
10−8 s. The main decay reactions giving rise to a νμ are

π+ → μ+ νμ, K+ → μ+ νμ, K+ → π0 μ+ νμ, (1.177)

where the last decay (K+
μ3) is suppressedwith respect to the direct decay by a factor of

20. For a fixed beam momentum, the probability of decay per unit length is constant,
thus giving a beam profile and probability of survival up to distance d:

Prob [x ≥ d] = exp

[
− m

|p| cτ
d

]
(1.178)

If we want this probability to be small, thus allowing for a sizable fraction of the
mesons to be decayed, the pipe length L needs to be larger than the decay length

L � |p|
m

cτ =
{

20±5 GeV
0.139 GeV · 7.8 m = 1100 ± 300 m π+
20±5 GeV
0.497 GeV · 3.7 m = 150 ± 40 m K+ (1.179)

The beam purity can be affected by the presence of ν̄μ and νe. These particles are
produced in the decay reaction:

μ+ → e+ νe ν̄μ. (1.180)

The mean muon energy in the two main decays can be estimated from Eq. (1.109)
giving
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〈
Eμ

〉 ≈ γπ,K
mπ,K

2

[
1 +

(
mμ

mπ,K

)2
]

≈
{
16 GeV π+

10 GeV K+ (1.181)

The probability of muon decay over a distance of order L as given by Eq. (1.179) is
therefore:

(
Eμ

mμ

)
cτμ

L
≈
{
1% π+

0.2% K+ (1.182)

where we have used cτμ = 660 m. Electron neutrinos can be also produced directly
by the helicity-suppressed decays π+ → e+ νe and K+ → e+ νe, although with a
probability about 10−4 ÷ 10−5 smaller than for the corresponding muonic decays.
For kaons, the decay reaction K+ → π0 e+ νe (BR = 5%) represents the largest
source of background.

Bando n. 18211/2016

Problem 1.34 A proton and an electron, both of energy E = 2 GeV, pass through
two scintillators separated by a distance d = 30 m.What is the time of flight between
the two scintillators for the two particles?

Solution

Since the velocity is constant, the TOF is simply given by:

t = d

βc
= d

c

[
1 −

(m

E

)2]− 1
2

= 30 m

3 × 108 m/s
·
{
1.00 electrons

1.13 protons
(1.183)

giving approximately 0.100 µs and 0.113 µs for electrons and protons, respectively.

1.2 Center-of-Mass Dynamics and Particle Decays

The position and three-momenta of the particles (ri,pi) define a set of canonical
phase-space variables. In practice one is usually concerned with the measurement or
the prediction of transition probabilities per unit volume, and between free-particle
states, i.e. quantum states of definite three-momentum pi. Therefore, the measure in
the phase-space (ri,pi) comes out quite naturally in calculations. The relativistic-
invariant phase-space measure for a system of n particles of prescribed energy and
momentum is defined by

dΦn(P; p1, . . . , pn) = (2π)4δ4(P −
∑

pi)

n∏

i=1

dpi

(2π)32Epi

. (1.184)
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The factor of 2Ep at the denominator comes from the conventional free-particle
normalisation:

〈
p|p′〉 = 2Ep (2π)3 δ3(p − p′), (1.185)

which makes dΦn Lorentz-invariant, see Problem 1.2. The volume factor d3ri is here
omitted because it usually cancels and is not much relevant in practice. The presence
of a δ4 function in Eq. (1.184) implies that not all of the 3n variables are independent,
since the allowed states only live in a hyper-surface such that

∑
pi −P = 0: all other

states have null measure, i.e. they cannot be “visited” by the system.
The differential decaywidth of a particle with total four-momentumP in the initial

state |i〉 into a channel |f 〉 is given by the formula:

dΓi→f (P; p1, . . . , pn) = 1

2E
|Mfi(P, p1, . . . , pn)|2 dΦn(P; p1, . . . , pn) (1.186)

where:

• Mfi is the relativistic matrix element of the interaction Hamiltonian between the
initial and final state.When the theory is perturbative, Feynman’s rules help organ-
ising the perturbative expansion of iM and calculate the various terms up to the
desired perturbative order.

• dΦn is the phase-space measure of Eq. (1.184).

Due to the factor of (2E)−1 at the denominator of Eq. (1.186), the differential width
transforms like the inverse of a time. The total width Γ is obtained by integrating
the differential width in the rest mass of the particle over the full phase-space and
over all decay channels. Given a particle decay, the probability of falling into a given
channel |f 〉 is called branching ratio (BR):

Γ =
∑

f

∫
dΓi→f , BR(i → f ) = Γi→f

Γ
(1.187)

Problems

Problem 1.35 Express the relativistic two-body phase-spacemeasure dΦ2 as a func-
tion of:

1. the solid angle of particle (1) in the centre-of-mass frame, and in particular for
the two cases p21 = p22 and p21 �= 0, p22 = 0;

2. the solid angle of particle (1) in the laboratory frame;
3. the Mandelstam invariant t = (pc − pa)

2 for a scattering a + b → c + d.
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Solution

At the price of adding some burden to the notation, wewill writeE2
pi, mi

= |pi|2 + m2
i ,

and use the notation E∗
i for the centre-of-mass energy of the i-th particle as in

Eq. (1.89). In order to reduce the phase-space measure into a measure on a sub-
set of phase-space variables, one has to integrate out the remaining ones and perform
suitable changes of variables.

1. In the centre-of-mass frame, |p1| = |p2| = |p∗|, so that Eq. (1.184) becomes:

dΦ2(P; p1, p2) = (2π)−2δ(
√

s − Ep1, m1 − Ep2, m2 )δ(p1 + p2)
dp1

2Ep1, m1

dp2
2Ep2, m2∫

. . . d3p2 = 1

(2π)24Ep∗, m1E−p∗, m2

δ
(√

s − Ep∗, m1 − E−p∗, m2

)
d3p1 =

= 1

16π2E∗
1E∗

2
δ

(√
s −

√
|p∗|2 + m2

1 −
√

|p∗|2 + m2
2

)
|p∗|2 d|p∗| dΩ∗

∫
. . . d|p∗| = 1

16π2E∗
1E∗

2

|p∗|2∣∣∣ |p
∗|

E∗
1

+ |p∗|
E∗
2

∣∣∣
dΩ∗ = 1

16π2
|p∗|√

s
dΩ∗. (1.188)

Two special cases are worth being considered:

dΦ2 =
⎧
⎨

⎩

√
1 − 4m2

s
dΩ∗
32π2 = β∗ dΩ∗

32π2 for m1 = m2 = m(
1 − m2

s

)
dΩ∗
32π2 for m1 = 0, m2 = m

(1.189)

where β∗ is the velocity of both particles in the centre-of-mass frame, see
Eq. (1.92).

2. This second parametrisation is useful for treating e.g. fixed-target scatterings,
where one is interested in one particle only (the projectile), andwants to integrate-
out the degrees of freedom of the struck target. Let the total four-momentum be
(E,P). Starting from Eq. (1.184) we get:

dΦ2(P; p1, p2) = (2π)−2δ(E − Ep1, m1 − Ep2, m2 )δ(P − p1 − p2)
dp1

2Ep1, m1

dp2
2Ep2, m2∫

. . . d3p2 = 1

(2π)24Ep1, m1EP−p1, m2

δ
(
E − Ep, m1 − EP−p1, m2

)
d3p1 =

= 1

16π2E1E2
δ

(
E −

√
|p1|2 + m2

1 −
√

|P − p1|2 + m2
2

)
|p1|2 d|p1| dΩ1

∫
. . . d|p1| = 1

16π2E1E2

|p1|2∣∣∣ |p1|E1
+ |p1|−|P| cos θ1

E2

∣∣∣
dΩ1 = 1

16π2
|p1|

E − E1
|P|
|p1| cos θ1

dΩ1.

(1.190)
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It remains to express |p1| as a function of cos θ1. This is best achieved by using
the equation of conservation of four-momentum, and squaring it in order to get
rid of the struck target kinematics:

p2 = P − p1, m2
2 = s + m2

1 − 2p1P,

E
√

|p1|2 + m2
1 = |p1||P| cos θ1 + s + m2

1 − m2
2

2
,

0 = |p1|2
(
1 − |P|2

E2
cos2 θ1

)
− 2|p1|

( |P|
E

)
cos θ1E∗

1 − |p∗|2,

|p1| =
|P|
E E∗

1 cos θ1 +
√

|p∗|2 + |P|2
E2 m2

1 cos
2 θ1

1 − |P|2
E2 cos2 θ1

, (1.191)

where E∗
1 and |p∗| are given by Eqs. (1.89) and (1.91), respectively.

It is interesting to study Eq. (1.190) in the non-relativistic limit |p1| � E ≈ m2.
To fix the ideas, we can imagine that the projectile is a classical particle, so that
E1 ≈ m1, and dE1/d|p1| ≈ 2E1/|p1| while the target is a heavy nucleus at rest of
mass m2. In this case:

dΦ2(P; p1, p2) ≈ 1

16π2

|p1|
m2

dΩ1 =
[

(2π)4

2m2(2π)3

]
1

2m1

m1|p1|
(2π)3

dΩ1. (1.192)

Modulo the numerical factor within parentheses, which accounts for the phase-
space of the struck particle and the (2π)4 factor in front of the delta function, and
the factor of (2m1)

−1 that comes from the relativistic normalisation of the wave
function of Eq. (1.185), this expression coincides with the relativistic version
of the density of states dNNR/dE for a non-relativistic particle of momentum p,
since:

dNNR

dE
= |p1|2 dΩ1

(2π)3

d|p1|
dE1

= |p1|3
2E1(2π)3

dΩ1 = m1|p1|
(2π)3

dΩ1. (1.193)

3. In the centre-of-mass frame, the momentum magnitude before and after the scat-
tering is in general different if there is some inelasticity. Indicating the centre-of-
mass momentum before (after) the scattering by p∗

ab (p
∗
cd), we have:

t = (pc − pa)
2 = m2

a + m2
b − 2|p∗

cd||p∗
ab|
(

1

β∗
a β∗

c

− cos θ∗
)

,

dt = 2|p∗
cd||p∗

ab| d cos θ∗. (1.194)
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We then use Eq. (1.188) and get rid of cos θ∗ in favour of t, obtaining:

dΦ2 = 1

16π2

|p∗
cd|√
s

dt

2|p∗
ab||p∗

cd|
dφ∗ = 1

16π2

dt

2|p∗
ab|

√
s

dφ∗. (1.195)

Notice that φ∗ in the formula above stands for the azimuthal angle around p∗
a

in the ab rest frame, so this formula remains valid (modulo φ∗ → φ) in any
reference frame where pa and pa are collinear.

Suggested Readings

The PDG review on kinematics, Chap. 47 of Ref. [4], offers a complete summary of
the most important results for two-body phase-space. Beware that the definition of
dΦn may differ by a factor of (2π)4 due to the normalisation of the four-momentum
conserving δ function.

Problem 1.36 Explicate the three-body phase-space measure dΦ3 in the centre-of-
mass frame by using the known expression of dΦ2.

Discussion

The phase-space measure dΦn for an arbitrary particle multiplicity n can be con-
structed with the recursive formula:

dΦn(P; p1, . . . , pn) = dΦj(q; p1, . . . , pj) dΦn−j+1(P; q, pj+1, . . . , pn)
dq2

2π
(1.196)

In order to prove it, we introduce twice the identity into Eq. (1.184) in a suitable
form, which, for sake of clarity, will be introduced between square brackets.

(2π)4δ(P −
n∑

i=1

pi)

n∏

i=1

dpi

(2π)32Epi

=

=
⎡

⎣(2π)4δ(q −
j∑

i=1

pi)
d4q

(2π)4

⎤

⎦× (2π)4δ(P − q −
n∑

i=j+1

pi)

n∏

i=1

dpi

(2π)32Epi

=

= dΦj(q; p1, . . . , pj) × (2π)4δ(P − q −
n∑

i=j+1

pi)×

×
n∏

i=j+1

dpi

(2π)32Epi

d4q

(2π)4

[
δ(q2 − (p1 + . . . + pj)

2) dq2
]

=
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= dΦj(q; p1, . . . , pj)(2π)4δ(P − q −
n∑

i=j+1

pi)

n∏

i=j+1

dpi

(2π)32Epi

d3q

(2π)32Eq

dq2

2π
=

= dΦj(q; p1, . . . , pj) dΦj(P; q, pj+1, . . . , pn)
dq2

2π
(1.197)

where we have made use of Eq. (1.16) to transform δ(q2 − μ2) d4q into d3q/2Eq.

Solution

We can apply Eq. (1.196) to the two-body phase-space (1.188) and obtain:

dΦ3(P; p1, p2, p3) = 1

16π2

|p3|√
s

dΩ3 · 1

16π2

|p∗
1|

m12
dΩ∗

1 · dm2
12

2π
=

= 1

(2π)5

1

8
√

s
|p∗

1||p3| dm12 dΩ∗
1 dΩ3 (1.198)

To conclude, one needs to express |p∗
1| and |p3| as a function of m12. This can be

done by means of Eq. (1.91), with the replacements
√

s → m12 for the former, and
m1 → m12, m2 → m3 for the latter.

Problem 1.37 Determine the three-body phase-space measure dΦ3 as a function of
the centre-of-mass energies of two of the particles, after integrating over all angles.

Solution

Let’s start from Eq. (1.184) and specialise the four-momenta of the three particles in
their centre-of-mass frame:

dΦ3(P; p1, p2, p3) = (2π)−5δ(
√

s − E∗
p1, m1

− E∗
p2, m2

− E∗
p3, m3

)δ(p∗
1 + p∗

2 + p∗
3)×

× d3p∗
1

2E∗
p∗
1, m1

d3p∗
2

2E∗
p∗
2, m2

d3p∗
3

2Ep∗
3, m3

∫
. . . d3p∗

3 = δ

(√
s −

√
|p∗
1|2 + m2

1 −
√

|p∗
2|2 + m2

2 −
√

|p∗
1 + p∗

2|2 + m2
3

)
×

× (2π)−5

8E∗
1E∗

2E∗
3

|p∗
1|2 d|p∗

1| dΩ∗
1 |p∗

2|2 d|p∗
2| dΩ∗

2

∫
. . . dΩ∗

1 dφ∗
2 = δ

(√
s −

√
|p∗
1|2 + m2

1 −
√

|p∗
2|2 + m2

2 −
√

|p∗
1 + p∗

2|2 + m2
3

)
×

× 2(2π)−3|p∗
1|2|p∗

2|2
8E∗

1E∗
2E∗

3
d|p∗

1| d|p∗
2| d cos θ∗

12
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∫
. . . d cos θ∗

12 = 2(2π)−3|p∗
1|2|p∗

2|2
8E∗

1E∗
2E∗

3

d|p∗
1| d|p∗

2|∣∣∣ |p
∗
1||p∗

2|
E∗
3

∣∣∣
= 1

4(2π)3

|p∗
1||p∗

2|
E∗
1E∗

2
d|p∗

1| d|p∗
2|

= dE∗
1 dE∗

2
4(2π)3

, (1.199)

where θ12 is the angle between p∗
2 and p∗

1, and where we have used the fact that
dEp/d|p| = |p|/Ep = βp. Finally, one notices that P = p1 + p2 + p3 implies that:

m2
ij = (P − pk)

2 = s − 2E∗
k

√
s + m2

k ⇒ dm2
ij = −2

√
s dE∗

k for i �= j �= k.

(1.200)

Hence, the phase-space volume 〈dΦ3〉 expressed in terms of the m2
ij becomes:

〈dΦ3〉 = dm2
12 dm2

23

16(2π)3s
= dm2

13 dm2
23

16(2π)3s
= dm2

13 dm2
12

16(2π)3s
. (1.201)

Equation (1.201) shows that the three-body phase-space is uniform over the invariant
masses of any two-pairs of particles.

The border of the domain in the (m2
12, m2

23) space is, in general, a non-trivial curve.
First of all, one notices that:

(mi + mj)
2 ≤ m2

ij ≤ (
√

s − mk)
2, (1.202)

where the boundaries correspond to particles (ij) being at rest in their centre-of-mass
frame, and particle k be at rest in the three-body centre-of-mass frame, respectively.
Without loss of generality, we can consider the first of Eq. (1.201). Equation (1.202)
implies that the domain is contained within the rectangle [(m1+m2)

2, (
√

s−m3)
2]×

[(m2 +m3)
2, (

√
s−m1)

2], whose sides are also tangent to the domain boundary. At a
given value of m12, the range of m23 can be determined by requiring the momentum
of particle (3) in the rest frame of (12) to be either parallel or antiparallel to the
momentum of particle (2), all other cases giving values of m23 that are, respectively,
larger or smaller. In this frame, the energy of particles (2) is given by Eq. (1.89), while
the energy of particle (3) can be obtained by applying a boost from the three-body
rest frame to the rest frame of (12):

E(12)
2 = m2

12 + m2
2 − m2

1
2m12

(1.203)

E(12)
3 = γp∗

(12)

(
E∗
3 − βp∗

(12)
(−|p∗

3|)
)

=

= s + m2
12 − m2

3
2
√

s m12

(
s − m2

12 + m2
3

2
√

s
+ |p∗

3|2 2
√

s

s + m2
12 − m2

3

)
=
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= s + m2
12 − m2

3
2
√

s m12

⎛

⎝ s − m2
12 + m2

3
2
√

s
+
[
s − (m12 − m3)

2
] [

s − (m12 + m3)
2
]

2
√

s(s + m2
12 − m2

3)

⎞

⎠ =

= 1

4s m12

(
2s2 − 2s(m2

12 + m2
3)
)

= s − m2
12 − m2

3
2m12

. (1.204)

The last result could have been obtained way more easily by noticing that, in the
rest frame of (12), the kinematics looks like the one of a fixed-target experiment, for
which Eq. (1.87) gives m2

12 + m2
3 + 2E(12)

3 m12 = s. Hence:

m2
23(m12) �

(
s − m2

1 + m2
2 − m2

3

2m12

)2

−

−
⎛

⎝

√
(m2

12 + m2
2 − m2

1)
2 + 4m2

2m2
12

2m12
±
√

(s − m2
12 − m2

3)
2 + 4m2

3m2
12

2m12

⎞

⎠

2

,

(1.205)

where the two signs correspond to the lower and upper bound, respectively.

Discussion

If the matrix element squared is uniform over m2
ij, the differential decay probabilities

dΓ/dm2
12dm2

23 is uniform in the domain of (m2
12, m2

23). Such a distribution for a
three-body decay is called Dalitz plot. Non-uniformities of the amplitude squared
over either of the m2

ij variables, would lead to a non-uniform distribution of the
experimental points. For example, this is the case if the decay can be mediated by
an intermediate resonance: indeed, if a narrow resonance of mass m0 and width Γ0

is present in e.g. the (12)-channel, then:

|M |2 ∝ 1

(m2
12 − m2

0)
2 + m2

0 Γ 2
0

≈ π

m0 Γ0
δ(m2

12 − m2
0), (1.206)

and the corresponding Dalitz plot will feature a cluster of experimental points around
the line m2

12 = m2
0.

Problem 1.38 Prove that in the centre-of-mass of a three-body decay, the maximum
value of the three-momentum is taken by the particle with the largest mass.
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Solution

The centre-of-mass momentum of particle k is given by Eq. (1.91):

|p∗
k |2 =

(
s − (mij + mk

)2) (
s − (mij − mk

)2)

4s
, (1.207)

where mij is the invariant mass of the (ij) pair and s is the mass squared of the mother
particle. Modulo some positive constants, the derivative of |p∗

k |2 with respect to m12

is:

∂|p∗
k |2

∂mij
∝ −mij

(
s − (mij − mk)

2
)− mij

(
s − (mij + mk)

2
)−

− mk
(
s − (mij − mk)

2
)+ mk

(
s − (mij + mk)

2
)
. (1.208)

The last row of Eq. (1.208) is always negative since (mij − mk)
2 ≤ (mij + mk)

2.
Hence, |p∗

k | is a decreasing function of mij, so that the maximum value corresponds
to the minimum value of mij, i.e. (mi + mj). Therefore:

|p∗
k |2max =

(
s − (mi + mj + mk

)2) (
s − (mi + mj − mk

)2)

4s
, (1.209)

and for any pair of indices i, k we have:

|p∗
k |max ≥ |p∗

i |max ⇔ s − (mi + mj − mk)
2 ≥ s − (mj + mk − mi)

2

mi + mj − mk ≤ mj + mk − mi,

2(mi − mk) ≤ 0, mk ≥ mi. (1.210)

Therefore, the particle that can take the maximum centre-of-mass momentum is also
the one with the largest mass. Experimentally, this value corresponds to the end-point
of the |p∗

i | distribution over several decays.

Problem 1.39 Consider the β-decay A → A′ e− ν̄e, where A and A′ are two heavy
nuclei and mA − mA′ − me = Q is large compared to me. Assume that the non-
relativistic matrix element squared |MNR|2 for this transition is approximately con-
stant. Show that the decay width is proportional to Q5.

Solution

Let’s denote the three momenta of the decay particles by pp, pe and pν . Since the
non-relativistic matrix element is a pure constant, it is more convenient to write
Eq. (1.186) using the non-relativistic normalisation
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〈
p|p′〉 = (2π)3δ3(p − p′). (1.211)

With this convention, the differential decay width becomes:

dΓ = |MNR|2(2π)4δ3(pA′ + pe + pν)δ(mA − EA′ − Ee − Eν)
d3pA′
(2π)3

d3pe

(2π)3
d3pν

(2π)3
=

= |MNR|2
(2π)5

δ

(
mA −

√
|pe + pν |2 + m2

A′ −
√

|pe|2 + m2
e − |pν |

)
×

× |pe|2 d|pe| dΩe |pν |2 d|pν | dΩν =

= 4|MNR|2
(2π)3

|pe|2
⎛

⎜⎝mA − mA′ − me︸ ︷︷ ︸
Q

−Te

⎞

⎟⎠

2

d|pe| (1.212)

Let’s see in more details the approximations that went into Eq. (1.212). Firstly, it
was assumed that the electron energy is much smaller than the proton mass, which is
indeed a good approximation since Tmax

e = Q; this approximation allows to neglect
the recoil energy taken by the nucleus. The other assumption is that the neutrino
mass is negligible, which is perfectly fine here. Equation (1.212) can be also written
as:

1

|pe|

√
dΓ

d|pe| = Q − Te. (1.213)

The left-hand side of Eq. (1.213) is the so-calledKurie plot, which is a linear function
of the electron energywith an end-point related to theQ-value of the reaction.Coming
back to Eq. (1.212), we can integrate over the electron momenta. Since the intagrand
grows like |pe|2, the integral is dominated by the high-energy part of the electron
spectrum. If we then make the approximation me = 0, the integration is trivial,
giving:

Γ ≈ |MNR|2
2π3

∫ Q

0
d|pe| |pe|2

(
Q2 − 2Q|pe| + |pe|2

)
= |MNR|2

2π3 Q5
(
1

3
− 1

2
+ 1

5

)
=

= |MNR|2Q5

60π3 . (1.214)

Equation (1.214) shows that the total decay width is proportional to the fifth power
of the Q-value, a property know as Sargent rule.

Discussion

One may wonder whether this result could have been obtained by plugging in
the phase-space measure of Eq. (1.199), corrected for the non-relativistic normal-
isation (1.211). Indeed, one can notice that the two measures are different, since
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Eq. (1.199) is linear in the two energies (after introducing the non-relativistic nor-
malisation), while Eq. (1.212) is quadratic in |p|. Indeed, looking back at Eq. (1.199),
one can see that the integration over the polar angle between the two momenta θ∗

12
lied on the assumption that there exists only one such angle so that the energy con-
servation is satisfied for a given value of |p∗

1| and |p∗
2|. However, if the third particle

is much heavier than the maximum energy available to the two lighter particles, so
that it can be considered at rest for what concerns the energy balance, the equation
of conservation of energy becomes nearly independent of θ∗

12, and the integration of
the last delta function is not valid anymore. Therefore, if m3 � m1,2, and the matrix
element is constant, then the two light particles momenta are uncorrelated in direc-
tion and fully anti-correlated in modulus, since E1 + E2 = m − E3 ≈ m − m3 = Q:
the phase-space measure is therefore given by the product of the two particle phase-
spaces, which are just the number of states inside a spheric layer of radius |p|.

Suggested Readings

The reader is addressed to Sect. 7.3 of Ref. [16] for another derivation of the Kurie
plot of β-decays.

Problem 1.40 A heavy nucleus of mass M∗, initially at rest in the laboratory frame,
decays to the ground state of mass M by emitting a photon. Determine the photon
energyEγ . Discuss a possible technique to suppress the energy shift due to the nuclear
recoil.

Solution

Let’s denote the photon energy in the laboratory by Eγ and the energy gap between
the two nuclear levels by ε, such that M∗ = M + ε. In the assumption ε/M � 1,
which is generally the case since the nuclear transitions produce photons with energy
of order 0.1÷ 1 MeV, whereas nuclear masses are at least three orders of magnitude
larger, we have:

M + ε = Eγ +
√

M2 + E2
γ ≈ Eγ + M + E2

γ

2M
, (1.215)

Eγ = ε − E2
γ

2M
≈ ε − ε2

2M
= ε

(
1 − ε

2M

)
.

Hence, the photon energy is smaller than the energy gap by a fraction ε/2M � 1
due to the nuclear recoil.

Discussion

If the width of the excited level is much smaller than the recoil energy taken by the
nucleus, the emitted photon won’t be anymore at the resonance. However, when the
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nucleus is bound inside a crystal, the crystal lattice behaves as a collective object,
resulting in a much larger effective mass M and thus no recoil energy will be taken
away: the emitted photon is then capable of inducing the inverse reaction γ + M →
M∗ with an enhanced cross section. This behaviour is called Mössbauer effect and
is vastly employed in spectroscopy.

Problem 1.41 Consider the decay of a particle of mass M into three particles of
identical mass m, assumed to be non-relativistic in the rest frame of the decaying
particle. The phase-space for this decay can be represented inside an equilateral
triangle centred around the origin of a cartesian coordinate system (x, y), such that
the kinetic energy of each particle in units of the Q-value, |pi|2/2mQ, is equal to the
distances of the point from the sides. Show that the allowed kinematic configurations
live inside a circle of equation x2 + y2 − 1

9 ≤ 0.

Solution

Consider an equilateral triangle of unit height centred around the origin of a cartesian
coordinate system (x, y). Let the vertices of the triangle be located at

r1 =
(
0,+2

3

)
, r2 =

(
−

√
3

3
,−1

3

)
, r3 =

(
+

√
3

3
,−1

3

)
(1.216)

as shown in Fig. 1.13. The sides of the triangle are then defined by the three straight
line equations:

(0, 23)

(−
√
3
3 ,−1

3) (+
√
3
3 ,−1

3)

ε2
ε1

ε3

y

x

Fig. 1.13 The phase-space for a three-body decay into non-relativistic particles of energy εi and
same mass m, represented as an equilateral triangle centred around the origin of a cartesian coordi-
nate system (x, y), such that the kinetic energy of each particle in units of the Q-value, |pi|2/2m Q,
is equal to the distances of the point from the sides. Only the shaded circle is however compatible
with the three-momentum conservation
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⎧
⎪⎨

⎪⎩

+√
3x + y − 2

3 = 0

−√
3x + y − 2

3 = 0

y + 1
3 = 0

(1.217)

The distances of a given point (x0, y0) inside the triangle from the three sides are
therefore given by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1 = |+√
3x0+y0− 2

3 |
2 = −

√
3
2 x0 − 1

2y0 + 1
3

ε2 = |−√
3x0+y0+ 2

3 |
2 =

√
3
2 x0 − 1

2y0 + 1
3

ε3 = y0 + 1
3

⇒ ε1 + ε2 + ε3 = 1, (1.218)

which shows that an equilateral triangle of unit height is the geometric locus of points
for which the sum of the distances from the three sides is equal to unity.

Let’s denote the adimensional quantity |pi|2/2m Q ≡ εi, i = 1, 2, 3, so that:

|p1|2
2m

+ |p2|2
2m

+ |p3|2
2m

= M − 3m = Q ⇔ ε1 + ε2 + ε3 = 1 (1.219)

Therefore, the phase-space points live inside an equilateral triangle such that the
distances of its internal points from the sides are given by εi. However, conservation
of momentum implies that p1 + p2 + p3 = 0, so that Eq. (1.219) can be also written
as:

2ε1 + 2ε2 + 2
√

ε1ε2 cos θ12 = 1, (1.220)

where θ12 is the angle between two of the particles. This condition, being more
restrictive than Eq. (1.219), places additional constraints on the allowed phase-space
points. In particular:

cos2 θ12 =
(
1 − 2ε1 − 2ε2

2
√

ε1ε2

)2

≤ 1 ⇒ ε21 + ε22 + ε1ε2 − ε1 − ε2 + 1

4
≤ 0,

(1.221)

By inserting any pair of equations in (1.218), say the first and the last, we can now
express the inequality above in terms of the coordinates (x, y), namely:

(
−

√
3

2
x − 1

2
y + 1

3

)2

+
(

y + 1

3

)2

+
(

−
√
3

2
x − 1

2
y + 1

3

)(
y + 1

3

)
−

−
(

−
√
3

2
x − 1

2
y + 1

3

)
−
(

y + 1

3

)
+ 1

4
≤ 0 (1.222)



1.2 Center-of-Mass Dynamics and Particle Decays 67

After some straightforward algebra, a large number of cancellations occurs and one
gets:

x2 + y2 − 1

9
≤ 0, (1.223)

which describes a circle of radius 1/3 centred around the origin and tangent to the
three sides of the triangle in their middle points. This is shown by the solid circle in
Fig. 1.13.

Discussion

As discussed in Problem 1.37, under some suitable assumptions on the matrix-
element, in a three-body decay the phase-space points are evenly distributed in the
(E1, E2) plane, where E1 and E2 are the energies of any two particles. The (x, y)
variables introduced in this exercise transform a tiny square of area dE1 dE2 into a
parallelogram uniformly in E1 and E2, so that the (x, y) points will be still evenly
distributed. The representation of decay events in this plane has been very popular in
the early years of particle physics as a tool to infer the properties of the interaction
responsible for the decay. A famous example is provided by the study of the decays of
a long-lived particle, originally called τ and later-on identified as the charged kaon,
into three pions, namely K+ → π+π+π−.

Suggested Readings

More details on the so-called θ -τ puzzle for the three-charged pion decay of charged
kaons, can be found inChap.3 ofRef. [12]. In particular, one can find there interesting
considerations on how different matrix elements would affect the distribution of
events in the (x, y) plane.

Problem 1.42 The thrust is an event-shape variable which, in the centre-of-mass
frame of a n-particle event is defined as

T(p1, . . . ,pn) = max
n

∑
i |pi · n|∑

i |pi | . (1.224)

with |n| = 1. Consider a three-particle decay and assume the three particles to
be massless. Prove that T = max{x1, x2, x3}, where xi = 2|pi|/√s and

√
s is the

centre-of-mass energy.

Solution

Let’s denote the three-momenta of the involved particles by pi, such that
∑

pi = 0.
Let n̂ be the direction that maximises T . By definition, we must have:
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0 = δT(n̂) =
[
θ1 p1 + θ2 p2 − θ3 (p1 + p2)

] · δn̂√
s

, (1.225)

where θi = ±1 are signs such that the individual scalar products are all positive. For
any choice of the signs θ1, the vector inside the square brackets is proportional to one
of the particle momentum. Since n̂ · δn̂ = 0, it also follows that n̂ has to be parallel
to either p1, or p2, or p3, so that:

T = max{T(e1), T(e2), T(e3)}, (1.226)

where ei are the directions of the three momenta. For example, for n̂ = e1, one has:

T(e1) = (|p1| + e1 · p2 + ||p1| + e1 · p2|)√
s

=

=

⎧
⎪⎪⎨

⎪⎪⎩

+ 2|p1|√
s

= x1 if p1 · p2 < 0, p1 · p3 < 0

− 2e1·p2√
s

≤ x2 if p1 · p2 < 0, p1 · p3 > 0

− 2e1·p3√
s

≤ x3 if p1 · p2 > 0

(1.227)

Similarly, we find:

T(e2)

⎧
⎪⎨

⎪⎩

≤ x1 if p1 · p2 < 0, p2 · p3 > 0

= x2 if p1 · p2 < 0, p2 · p3 < 0

≤ x3 if p1 · p2 > 0

(1.228)

T(e3)

⎧
⎪⎨

⎪⎩

≤ x1 if p3 · p1 < 0, p3 · p2 > 0

≤ x2 if p3 · p1 > 0

= x3 if p3 · p1 < 0, p3 · p2 < 0

(1.229)

Then, we notice that the angles α12, α23, α13 between three vectors p1, p2, p3 such
that

∑
i pi = 0 satisfy α12 + α23 + α13 = 2π and αij < π ; therefore, if αij < π/2,

then the other two opening angles must be larger than π/2. In this latter case, it
follows that

|pk| =
√

|pi|2 + |pj|2 + 2 pj · pj ≥ max{|pi|, |pj|}, (1.230)

i.e. the vector that “recoils” against the two vectors with opening angle smaller than
π/2 has also the largest modulus among the three. If we now consider all possible
cases, we obtain:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T(e1) ≤ x3, T(e2) ≤ x3, T(e3) = x3 > x1, x2 if p1 · p2 > 0

T(e1) ≤ x2, T(e2) = x2 > x1, x3, T(e3) ≤ x2 if p1 · p3 > 0

T(e1) = x1 > x2, x3, T(e2) ≤ x1, T(e3) ≤ x1 if p2 · p3 > 0

T(e1) = x1, T(e2) = x2, T(e3) = x3 if pi · pj < 0 ∀i, j

(1.231)

For all the above cases (which exhaust all the possibilities), it always holds that:

T = max{x1, x2, x3}. (1.232)

Suggested Readings

More informations on the thrust can be found in Ref. [17].

Problem 1.43 Event-shape variables are widely used to describe the structure of
the hadronic events and to test perturbative chromo-dynamics (pQCD). Consider the
three event-shape variables:

T = max
n

∑
i |pi · n|∑

i |pi| (1.233)

C = 3(λ1λ2 + λ1λ3 + λ2λ3), λk eigenvalues of Θ =
∑

i
pi pTi
|pi|∑

i |pi | (1.234)

S = 3

2
min
n

∑
i(pi × n)2∑

i p
2
i

. (1.235)

1. Show that T and the C are infrared-safe observables.
2. Show that the S is not.

Discussion

An observable In(p1, . . . , pn), which is a function of the four-momenta pi of an
arbitrary number of partons, is said to be infrared-safe (IR-safe) if:

In+1(p1, . . . , pn, 0) = In(p1, . . . , pn)

In+1(p1, . . . , λpn, (1 − λ)pn) = I(p1, . . . , pn)
(1.236)

for any particle n. This is equivalent to requiring that the observable does not dis-
tinguish between configurations related to each other by a soft gluon emission or by
the collinear splitting of a parton. For QCD, the Kinoshita–Lee–Nauenberg theorem
ensures that inclusive-enough observables are IR-safe, see e.g. Sect. 3.5 of Ref. [18].
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Solution

In order to prove that T is IR-safe, we need to verify the conditions (1.236) for an
arbitrary set of four-momenta:

Tn+1(p1, . . . , pn, 0) = max
n

∑n
i |pi · n| + |0 · n|
∑n

i=1 |pi| + 0
= Tn(p1, . . . , pn)

Tn+1(p1, . . . , λpn, (1 − λ)pn) = max
n

∑n−1
i |pi · n| + λ|pn · n| + (1 − λ)|pn · n|
∑n−1

i=1 |pi| + λ|pn| + (1 − λ)|pn+1|
=

= Tn(p1, . . . , pn) (1.237)

The variable C is proportional to the second invariant of the symmetric tensor Θ .
Indeed:

0 = det(Θ − λ1) = λ3 − Tr{Θ}λ2 + 1

2

[
(Tr{Θ})2 − Tr{Θ2}]

︸ ︷︷ ︸
(λ1λ2+λ2λ3+λ1λ3)= C

3

− detΘ (1.238)

where λi are the eigenvalues of Θ . To study the IR properties of C, it suffices to
verify that the Θ tensor satisfies the conditions (1.236):

Θn+1(p1, . . . , pn, 0) =
∑n

i
pipT

i
|p| + 0

∑n
i=1 |pi| + 0

= Θn(p1, . . . , pn)

Θn+1(p1, . . . , λpn, (1 − λ)pn) =
∑n−1

i
pipT

i
|pi| + λ2pnpT

n
λ|pn| + (1−λ)2pnpT

n
(1−λ)|pn|∑n

i=1 |pi| + λ|pn| + (1 − λ)|pn| =
= Θn(p1, . . . , pn) (1.239)

Finally, we notice that S can be also written as:

S = 3

2
min
n

∑
i(pi × n)2∑

p2i
= 3

2
min
n

∑
i p

2
⊥ i∑

i p
2
i

, (1.240)

where p⊥ is the momentum component orthogonal to the direction n. We now intro-
duce an auxiliary tensor W defined as:

W =
∑

i pi pTi∑
i p

2
i

= WT. (1.241)
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For any vector n, it holds:

nT W n =
∑

i p
2
‖ i∑

i p
2
i

= 1 −
∑

i p
2
⊥ i∑

i p
2
i

. (1.242)

Hence, minimising S(n) is equivalent to maximise the quadratic form nT W n subject
to the constraint nTn = 1:

0 = ∇n
[
nT W n − λ (1 − nTn)

] ⇔ Wn = λn. (1.243)

This implies that n is the eigenvector of the W tensor corresponding to the largest of
its three eigenvalues λ1 ≥ λ2 ≥ λ3:

S = 3

2
(1 − λ1) . (1.244)

To study the IR properties of S, we need to test whether W satisfies the condi-
tions (1.236):

Wn+1(p1, . . . , pn, 0) =
∑n

i pi pTi + 0∑n
i=1 |p2i | + 0

= Wn(p1, . . . , pn) (1.245)

Wn+1(p1, . . . , λpn, (1 − λ)pn) =
∑n−1

i pi pTi + λ2 pn pTn + (1 − λ)2pn pTn∑n
i=1 |p2i | + λ2 |p2n| + (1 − λ)2|p2n|

�= Wn(p1, . . . , pn). (1.246)

The last inequality is a consequence of the non-linear dependence ofW on the particle
momenta. Another way to see that S is not collinear-safe is to consider the case where
n is aligned with one of the particle momenta p: in this case, a collinear splitting of
that particle would not change the numerator (n × p = 0), but it would change the
denominator due to the quadratic dependence on the momenta.

We conclude by mentioning that, differently from the sphericity, the event-shape
variable:

S′ =
(
4

π

)2

min
n

(∑
i |pi × n|∑

i |pi|
)

, (1.247)

called sphericity, is instead IR-safe.

Suggested Readings

See Refs. [17, 18] for more details on IR properties of observables relevant for
experimental tests of pQCD.
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Problem 1.44 Consider the parton-level reaction e+ e− → q q̄ g, where all final-
state partons are assumed to be massless. Define the adimensional parameters xi =
2piP/s with pi = q, q̄, g and P = ∑

i pi. Show that the allowed values for the xi

parameters are located inside a triangle in the plane (xq, xq̄). Consider now the metric
yij ≡ 2pipj/s. An event is said to contain three jets if mini �=j yij > y for some value of
the jet parameter y. Determine the geometric locus of three-jet events in the (xq, xq̄)

plane as a function of y.

Discussion

In this problem, the concept of jet is introduced. A jet is defined by a jet-finding algo-
rithm that determines how to cluster together an ensemble of particles in an iterative
procedure based on a definition of distance between particles. Metrics based on the
Rij distance of Eq. (1.167) are quite popular at hadron colliders, while the Lorentz-
invariant metric of the exercise, also known ad JADE distance, are more popular at
lepton colliders. Observables related to a jet-finding algorithm should be predictable
within a given theory, if one wishes to compare its predictions to the experiment.
A problem which often occurs in theories of massless particles like QCD and QED
is connected with the divergences associated with soft or collinear splitting of the
massless particles, see Problem 1.47. These divergences can be consistently cate-
gorised and re-absorbed for IR-safe observables, see Problem 1.43. The replacement
of parton-level observables with jet-based ones allows to recover a well-posedness
necessary to carry out the perturbative calculations. A jet algorithm can be studied in
an experiment by using as input the experimental signature of the theoretical particles.

Solution

If y > 1
3 , then the event contains exactly two jets. This is easy to prove since:

y12 + y13 + y23 =
∑

i �=j

2pipj

s
= (
∑

i pi)
2

s
= 1, (1.248)

hence at least one of the three measures has to be smaller than 1/3. The algorithm
will then cluster the two “closest” partons, leaving two resolved jets. We then focus
on the more interesting case 0 ≤ y ≤ 1

3 , where three-jet configurations can arise. It
is also interesting to notice that for three partons:

min
i �=j

{
(pi + pj)

2

s

}
= min

k

{
s − 2pkP

s

}
= min

k
{1 − xk} = 1 − max

k
{xk} = 1 − T ,

(1.249)

where T is the thrust parameter introduced in Problem 1.42. The three xi parameters
are not independent since they satisfy the relation:
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xq + xq̄ + xg = 2(q + q̄ + g)P

s
= 2. (1.250)

Each event can be parametrised by two energy fractions xq and xq̄. In the (xq, xq̄)

plane, the allowed points lie in the geometric locus defined by:

⎧
⎪⎨

⎪⎩

xq ≤ 1

xq̄ ≤ 1

xq + xq̄ ≥ 1.

(1.251)

which identifies a rectangular triangle in the (xq, xq̄) plane. The top-side (left) of this
triangle corresponds to xq̄ = 1 (xq = 1), i.e. a collinear emission of the gluon by the
quark (antiquark). The top-right vertex of the triangle corresponds instead to a soft
gluon emission, since xq + xq̄ → 2 implies xg → 0 as for Eq. (1.250). For a three-jet
event one has instead:

min
k=1,2,3

{1 − xk} > y ⇒ 1 − xq,q̄,g > y, (1.252)

The three-jet events are therefore associated with points located inside a triangle
similar to Eq. (1.251), but with shorted sides defined by:

⎧
⎪⎨

⎪⎩

2y ≤ xq ≤ 1 − y

2y ≤ xq̄ ≤ 1 − y

xq + xq̄ ≥ 1 + y.

(1.253)

Figure1.14 shows the triangle for a generic value of y. Notice that for y > 0, the
sides of the larger triangle are excluded from the three-jet parameter space. Since all

Fig. 1.14 The phase-space
representation of a qq̄g event
in terms of the
Lorentz-invariants variables
xi = 2piP/s computed in the
centre-of-mass frame. The
domain corresponding to
3-jet events according to the
JADE algorithm with
parameter y is the one
delimited by the light lines

q ‖ g

xq̄

xq

q̄ ‖ g

g → 0

1 − y

2y

2y 1 − y

2
3

2
3

3 − jet
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the divergence related to a soft or collinear splitting are located on the top and right
side of the triangle, the three-jet phase-space is free from IR divergences.

Suggested Readings

A detailed calculation of the LO three-jet cross section with the JADE algorithm can
be found in Ref. [18].

Bando n. 13705/2010

Problem 1.45 The reaction K− p → π0 Λ0 is studied in a fixed-target experiment.
Determine the beam energy for which the Λ0 baryon can be produced at rest in the
laboratory frame.

Solution

Let’s denote the four-momenta of the involved particles by pK , pp, pπ and pΛ. In the
laboratory frame, they can be written as:

pK = (EK ,pK), pp = (mp, 0), pΛ = (mΛ, 0), pπ = (Eπ ,pK). (1.254)

Conservation of energy and momentum implies that pK + pp = pπ + pΛ. Since
nothing is known about the π0 kinematics after the scattering, we get rid of it by
squaring the π0 four-momentum:

pπ = pK + pπ − pΛ,

m2
π = m2

K + m2
p + m2

Λ + 2EK mp − 2EK mΛ − 2mp mΛ,

2EK (mΛ − mp) = m2
K + m2

p + m2
Λ − 2mp mΛ − m2

π ,

EK = (mΛ − mp)
2 + m2

K − m2
π

2(mΛ − mp)
. (1.255)

Discussion

Equation (1.255) has the same form of the centre-of-mass energy in a two-body
decay with

√
s = mΛ − mp, see Eq. (1.89). Indeed, we could have guessed this

result by noticing that this scattering reaction is kinematically identical to the decay
Λ0 → p K− π0, with the proton at rest, which is analogous to a two-body decay
where only a centre-of-mass energy

√
s = mΛ − mp is available for the two mesons.

Notice that not all scatterings at energy EK produce Λ’s at rest in the laboratory.
Indeed, this particular configuration corresponds to a Λ emitted forward (θ∗ = 0)
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in the centre-of-mass frame: for any other angle θ∗, a different kinematics in the
laboratory will arise.

Bando n. 1N/R3/SUB/2005

Problem 1.46 A proton beam of energy E1 = 20 GeV collides head-on against an
other beam of protons of energy E2 = 5 GeV. Determine:

1. the centre-of-mass energy of a binary pp collision;
2. the velocity of the centre-of-mass in the laboratory frame;
3. the angle in the laboratory of a relativistic particle produced at 90◦ in the centre-

of-mass;
4. the energy that a proton beam must have in order to generate the same centre-of-

mass energy in a fixed-target collision.

Solution

1. Let’s denote the four-momenta of the colliding protons by pi = (Ei,pi). The
centre-of-mass energy is given by the square-root of the Mandelstam variable:

s = (p1 + p2)
2 = 2m2

p + 2(E1E2 + |p1||p2|) =

= 2m2
p + 2E1E2

⎛

⎝1 +
√

1 −
(

mp

E1

)2
√

1 −
(

mp

E2

)2
⎞

⎠ . (1.256)

The protonmassmp = 0.938GeV is small compared to either of the two energies,
so that a first-order expansion of the square roots is accurate enough for most
purposes, giving

√
s ≈ 20 GeV. A complete calculation yields

√
s = 19.95 GeV.

2. The velocity of the centre-of-mass frame is the velocity of a “particle” of four-
momentum p1 + p2, see Eq. (1.96), hence:

β =
∣∣∣
√

E2
1 − m2

p −
√

E2
2 − m2

p

∣∣∣
E1 + E2

= 15.07 GeV

25 GeV
= 0.603. (1.257)

3. A relativistic particle with centre-of-mass velocity β∗ ≈ 1 and polar angle θ∗ =
π/2 with respect to the beam direction, will emerge at an angle θ in the laboratory
frame given by Eq. (1.44). If we chose the direction of the x axis as aligned with
the most energetic proton, then, the boost parameter to the laboratory frame is
given by −β. We can therefore use Eqs. (1.44) and (1.257) to get:

tan θ = sin(π/2)

γ (cos(π/2) + β)
=

√
s√

s β γ
=

√
s

|p2| − |p1| = 19.95 GeV

15.07 GeV
= 1.32,

θ = atan(1.32) = 52.9◦. (1.258)
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4. For a proton collision against a fixed-target at the same centre-of-mass energy,
the beam momentum Efix must satisfy:

√
2m2

p + 2mp Efix = √
s, 2mp (mp + Efix) = s,

Efix = s − 2m2
p

2mp
= (19.95 GeV)2 − (0.938 GeV)2

2 · 0.938 GeV
= 211 GeV, (1.259)

which is more than one order of magnitude larger than the highest proton energy for
head-on collisions.

Bando n. 1N/R3/SUB/2005, Bando n. 13153/2009

Problem 1.47 Can a photon decay to an electron-positron pair in vacuum? Can a
particle radiate a photon in vacuum? Consider a photon conversion in the following
two cases: γ → e+ e− in the electromagnetic field of a heavy nucleus of mass mN ,
initially at rest, and γ → e+ e− in the neighbourhood of an electron, also at rest. For
both cases, determine the threshold energy of the photon such that the reaction can
take place.

Discussion

The four-momentum p of a particle is either time-like (p2 > 0) or light-like (p2 = 0).
In both cases, the sum of two such four-vectors is always time-like. Indeed, if at least
one of the particles is massive, say particle a, one can make a boost to its rest frame
and compute explicitly the invariant:

(pa + pb)
2 = p2a + p2b + 2papb = m2

a + m2
b + 2maE(a)

b ≥
≥ m2

a + m2
b + 2mamb = (ma + mb)

2 > 0. (1.260)

If instead both particles are massless, then in any frame (pa + pb)
2 = 2Ea Eb (1 −

cos θab) ≥ 0. By iteratively clustering pairs of four-momenta, it then follows that

(pa + pb + pc + . . .)2 ≥ (ma + mb + mc + . . .)2. (1.261)

The right-hand side of this inequality is the tightest lower bound and corresponds
to a configuration where all particles are at rest in their centre-of-mass frame. For a
reaction a + b → c + d + . . ., with b at rest in the laboratory frame, we then have:

s = (pa + pb)
2 = (pc + pd + . . .)2,

m2
a + m2

b + 2Ea mb = (pc + pd + . . .)2 ≥ (mc + md + . . .)2. (1.262)

Since the laboratory energy of Ea is a linear function of s, its minimum value cor-
responds to the minimum possible value of s, which is given by the left-hand side
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of Eq. (1.261). The threshold condition for a fixed-target scattering corresponds to a
beam energy such that:

Ethr
a = (mc + md + . . .)2 − m2

a − m2
b

2mb
. (1.263)

Solution

Let’s consider the reaction γ → e+ e−, where pγ , pe+ , and pe− are the four-momenta
of the tree particles. Conservation of energy and momentum implies:

pγ = pe+ + pe− , p2γ = 2m2
e + 2pe+pe− , 0 = m2

e + pe+pe− . (1.264)

In the rest frame of the electron, the Lorentz-invariant product pe+pe− is E′
e+ me > 0,

hence the last equality in Eq. (1.264) cannot be satisfied. Notice that this is not the
case if me were zero: in this latter case, either a collinear splitting with pe− parallel to
pe+ , or the emission of an infinitely soft electron or positron, would allow Eq. (1.264)
to be still fulfilled. Let’s now consider the reaction e− → e− γ . Like in the previous
case, one gets the condition:

pe− = p′
e− + pγ , p2e− = p′2

e− + p2γ + 2pγ p′
e− , 0 = pγ p′

e− (1.265)

In the rest frame of the final electron, pγ p′
e− = E′

γ me > 0. Notice that the only
possibility for Eq. (1.265) to be satisfied is again through a collinear splitting in the
limit me → 0, or through an infinitely soft photon emission.

As seen from Eq. (1.264), photon conversion in vacuum is not allowed, whereas
photon conversion in the presence of a spectator particle is kinematically allowed.
Let’s consider the reaction γ X → e+ e− X, where X can be either an electron or a
heavy nucleus at rest in the laboratory frame. The reaction can occur if the photon
energy is above the threshold for e+e− production, namely:

Ethr
γ =

⎧
⎨

⎩

(2me+me)
2−m2

e
2me

= 4me electron
(2me+mN )2−m2

N
2mN

= mN
2

[
4me
mN

+ O
(

me
mN

)]
≈ 2me nucleus

(1.266)

Thus, photon conversion in the electromagnetic field of a heavy nucleus requires a
factor of two smaller threshold energy compared to the conversion in the electron
field.

Problem 1.48 A photon converts to γ → e+e− in the electromagnetic field of
a heavy nucleus of mass mN . Calculate the minimum momentum transfer to the
nucleus |q| when the photon has an initial energy Eγ = 1 GeV. Estimate an order of
magnitude for the opening angle between the two leptons in the laboratory frame.
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Discussion

The process by which a photon converts in matter is known as Bethe–Hadler, after
the authors who first computed its theoretical cross section. It can be heuristically
explained like follows. A photon has four-momentum pγ = (Eγ , Eγ ex), which
gives p2γ = E2

γ − E2
γ = 0. In order to transmute into a pair of massive electrons, the

photon needs to “acquire” a mass. This can be achieved by transfering a quantity
q of its momentum to the nearby nucleus with no energy loss, provided that the
total four-momentum is conserved. In this way: pγ → pX = (E, E − |q|) and p2X is
now positive. Exchanging three-momentum with a negligible energy loss is indeed
possible if mN � Eγ .

Solution

Conservation of energy-momentum implies that pγ + pN = pe+ + pe− + p′
N . Let’s

define:

pX = pe+ + pe− , q = pγ − pX = p′
N − pN = (

√
|q|2 + m2

N − mN ,q) (1.267)

If the energy of the photon is much smaller than the nuclear mass mN , then the
exchanged momentum |q| is also much smaller than mN , so that:

q ≈
( |q|2
2mN

,q
)

. (1.268)

From the momentum conservation equation pX = pγ − q, it follows:

|q|4
4m2

N

+
(
1 + Eγ

mN

)
|q|2 − 2Eγ |q| cos θ + m2

X ≈
|q|2 − 2Eγ |q| cos θ + m2

X = 0, (1.269)

where θ is the angle of q with respect to the photon direction. Terms suppressed
by powers of mN have been neglected. From Descartes’ rule of sign, we see that
Eq. (1.269) admits a valid solution only if cos θ > 0. Explicitly:

|q|± = Eγ cos θ ±
√

E2
γ cos

2 θ − m2
X . (1.270)

It can be easily verified that ∂|q|±/∂m2
X ≶ 0 and ∂|q|±/∂ cos θ ≷ 0, so that the

minimummomentum transfer corresponds to a nucleus recoil parallel to the incoming
photon momentum and to the minimum possible invariant mass of the e+e− pair,
which is given by mmin

X = 2me, see Eq. (1.261). Hence:
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|q|min = Eγ

(
1 −

√
1 − 4m2

e

E2
γ

)
≈ 2m2

e

Eγ

≈ 0.5 KeV. (1.271)

We now estimate the typical size of the opening angle φ between the electron and
positron. If mX = 2me, the velocity of the two particles in their rest frame is zero
as for Eq. (1.92): any boost from the reference frame to the laboratory frame will
maintain the two momenta parallel to each other, hence φ = 0. The largest opening
angle for a two-body decay as a function of the velocity β of the mother particle (X
in our case) and on the velocity β∗ of the daughter particles in their c.o.m frame is
given by Eq. (1.65):

tan(φmax) = 2 γ β β∗

γ 2 β2 − β∗2 =
2|pX |

√
m2

X − 4m2
e

|pX |2 − (m2
X − 4m2

e)
. (1.272)

Since pair-production is an electromagnetic process where, at leading order, a virtual
photon is exchanged between the nucleus and a virtual electron, one can expect the
differential cross section to feature the typical ∼1/|q|4 behaviour, so that the bulk of
the conversions will have |q| � |q|min, or equivalently mX = f · 2me, with f of order
one. Since |q|min � Eγ , for small transfered momenta, the momentum |pX | of the
e+e− pair is |pX | ≈ Eγ . Equation (1.273) then gives

φ ∼ |φmax − φmin|
2

≈ me

Eγ

√
f 2 − 1 = O(mrad). (1.273)

The possibility to measure the opening angle, and thus to determine the decay plane
of lepton pair, opens the possibility to use the Bethe–Hadler process as a polarimeter
of the incoming photon, since the orientation of the decay plane is correlated with
the polarisation of the photon.

Suggested Readings

Reference [19] provides a complete review of the photo-production mechanism of
lepton-antilepton pairs. The idea of using the double photon-conversion for the mea-
surement of the CP properties of the Higgs boson in the H → γ γ channel has been
investigated by the phenomenological work of Ref. [20].

Bando n. 13153/2009

Problem 1.49 The strong reaction p p → X K+ K− is studied in laboratory,
where X denotes an unknown particle. Determine the values of the electric charge,
strangeness, and baryon number of X. Let the mass of X be twice the proton mass.
Determine the minimal energy in the laboratory frame necessary to produce X in a
fixed target experiment.
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Solution

Since the strong interaction conserves the electric charge (Q), the strangeness (S), and
the baryon number (B), it follows that QX = +2, SX = 0, and BX = 2. See Chap.5
for more details. If mX = 2mp, the threshold energy for a fixed-target collision is
given by Eq. (1.263):

Ethr
p = (2mp + 2mK)2 − 2m2

p

2mp
= mp

[
1 + 4

(
mK

mp

)
+ 2

(
mK

mp

)2
]

= 3.43 GeV,

(1.274)

where we have used the PDG values mp = 0.938 GeV and mK = 0.494 GeV [4].

Problem 1.50 Determine the threshold energy for the antiproton production p p →
p p p p̄, when using a proton beam on a liquid-hydrogen target. Consider now the
case that the target consists of a heavy material, so that the target proton is actually
a bounded nucleon. Assume a Fermi energy EF = 30 MeV. By how much does the
threshold energy get reduced by the nuclear motion?

Solution

Let’s first consider the case where the target consists of liquid hydrogen. The thermal
motion, being characterised by an energy kBT ≈ 25 meV (T/300 K), is totally
negligible, so that the target proton can be safely assumed at rest. The threshold
energy is therefore given by Eq. (1.263):

Ethr
p = (4mp)

2 − 2m2
p

2mp
= 7mp = 6.56 GeV, (1.275)

or, in terms of kinetic energy, T thr
p = 6mp = 5.6 GeV.

If the target proton is bounded inside a nucleus, its momentum can be as large as
the Fermi momentum |pF|. Since EF � mp, the bounded nucleon can be treated as
classical. The most favourable kinematical configuration corresponds to a nucleon
of momentum |pF| moving against the incoming proton. The threshold condition of
Eq. (1.262) gets modified to:

2m2
p + 2Ethr

p

(
mp + |pF|2

2mp

)
+ 2
√

(Ethr
p )2 − m2

p|pF| = (4mp)
2. (1.276)

Introducing the adimensional parameter ε = |pF|/mp = √
2EF/mp ≈ 0.23, we can

simplify the above equation by neglecting terms of O(ε2):

http://dx.doi.org/10.1007/978-3-319-70494-4_5
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(Ethr
p )2 − 14mp

(
1 + ε2

2

)
+ (7mp)2 + ε2m2

p = 0

Ethr
p = 7mp

(
1 + ε2

2

)
−
√

(7mp)2(1 + ε2) − (7mp)2 − ε2m2
p =

= 7mp

(
1 + ε2

2

)
−
√
48m2

p ε2 = 7mp

(
1 + EF

mp

)
−
√
96mp EF = 5.24 GeV,

(1.277)

corresponding to a proton kinetic energy T thr
p = 4.3 GeV, i.e. about 1.3 GeV less

than that necessary with a hydrogen target.

Suggested Readings

This reaction was first produced in laboratory by a E. Segrè et al. at the AGS accel-
erator at Berkeley. The reader is encouraged to study the discovery paper [21]. A
guided discussion on the experimental set up can be also found in Ref. [12].

Bando n. 18211/2016

Problem 1.51 Given the Boltzman constant kB = 8.6 × 10−5 eVK−1, estimate
the typical wavelength of the cosmic background radiation. Which part of the EM
spectrum does it belong to?

Solution

The cosmic microwave background (CMB) features a black-body spectrum with
temperature T ≈ 2.7K. The energy density per unit of frequency is given by Planck’s
law

dE

dν
= 8πh

c3
ν3

exp (hν/kBT) − 1
. (1.278)

The peak frequency mode has an energy of about 3kBT , so that:

3kBT = hν̄ = hc

λ̄
, λ̄ = hc

3kBT
=

= 6.6 × 10−34 J s · 3 × 108 m s−1

3 · 8.6 × 10−5 K−1 · 1.6 × 10−19 J · 2.7 K
≈ 1.7 mm, (1.279)

corresponding to a frequency ν̄ = 160 GHz. The typical radiation spectrum is there-
fore located in the microwave domain.

Bando n. 13705/2010
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Problem 1.52 A proton of the cosmic radiation can produce π0 by interacting with
the cosmic microwave background (CMB) at 3 K. You can assume that the CMB
photons are uniformly distributed in spacewith an energy densityργ = 0.38 eV/cm3,
and have an average energy Eγ = 0.7 meV. What is the proton energy threshold?
At the energy threshold, what fraction of the proton energy gets lost, and what is
the minimum angle between the two photons in the π0 decay? Let us assume that
the photo-absorption cross section above threshold is σγ p = 200 μbarn. Provide an
estimate of the proton mean free path.

Discussion

The existence of a threshold energy for the inelastic reaction p γCMB → p π0, where
γCMB is a photon of the cosmic microwave radiation, implies a suppression of the
cosmic ray spectrum above that threshold, known as the GZK cut-off.

Solution

The lowest proton energy threshold corresponds to a CMB photon of energy Eγ

moving against the proton. For this configuration, one has:

m2
p + 2mp mπ + m2

π = m2
p + 2Ethr

p Eγ + 2|pp|Eγ . (1.280)

Since Ethr
p /mp ∼ mπ0/Eγ � 1, it can be safely assumed that |pp| ≈ Ep. Therefore:

Ethr
p = mπ0

2mp + mπ0

4Eγ

= 0.135 GeV

(
(2 · 0.938 + 0.135) GeV

4 · 7 × 10−13 GeV

)
=

= 0.9 × 1018 eV. (1.281)

At the threshold, both the proton and the neutral pion are produced at rest in their
centre-of-mass frame. The gamma factor of the centre-of-mass is given by γ =
(Ethr

p + Eγ )/(mp + mπ0) ≈ Ethr
p /(mp + mπ0). The relative energy loss suffered by the

proton after the photon absorbtion is therefore given by:

E′
p = γ mp = mp

mp + mπ0
Ethr

p ⇒ Ethr
p − E′

p

Ethr
p

= mπ0

mp + mπ0
≈ 0.12. (1.282)

The minimum open angle between the two photons from the π0 decay is given by
Eq. (1.61):

φmin = 2

γ
= 2(mp + mπ0)

Ethr
p

≈ 2 × 10−19 rad. (1.283)

Given a process with cross section σ , the interaction length λ is defined as the
inverse of the probability of interaction per unit length and per incoming particle,
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see Eq. (1.291). Since both the proton and the CMB photon are moving in opposite
direction at speed c, the relative velocity is vrel = 2c, see Eq. (1.20). By definition of
cross section, the number of interactions per unit time and unit volume is given by:

dNγ p

dt d2A dx
= ρp ργ vrel · σγ p,

dNγ p

dt
= (c ρp d2A dx

) · 2 ργ σγ p = dΦp dx · 2 ργ σγ p,

dNγ p

(dΦp dt) dx
= 2 ργ σγ p ⇒ λ = 1

2 ργ σγ p
= 1

2 0.38 eVcm−3

0.7×10−3 eV
· 2 × 10−28 cm2

=

= 5 × 1024 cm = 1.5 × 106 parsec, (1.284)

Here, dΦp in the intermediate calculations is the flux of incoming proton entering
the infinitesimal volume d2A dx, so that dNpγ /dΦp dt is the number of interactions
per incoming proton.

1.3 Cross Section

The cross section σ of a scattering process a b → X, where a is a moving projectile
and b is at rest, is defined as the number of reactions X measured per unit time, per
unit scattering center, and per unit of incoming flux density:

σ = 1

Ja

dNX

dt dNb
, (1.285)

wheredNb is the number of scattering centers in an infinitesimal volumed3r irradiated
by the flux density Ja. The latter is defined as the number of particles a crossing per
unit time and unit area the normal surface at the position of the volume d3r:

Ja = na|va|, (1.286)

where na and |va| are the particle density ([n] = m−3) and velocity, respectively. The
dimension of σ is therefore [σ ] = cm2. The definition (1.285) can be generalised
to an arbitrary kinematics of the involved particles, so that the distinction between
projectile and target can be ultimately ignored. Firstly, we introduce the particle
density of the target, nb, and write:

σ =
(
dNX/dt d3r

) · d3r
(
nb · d3r

)
na|va| =

(
dNX/dt d3r

)

nb na |va| (1.287)

where we have introduced at the numerator the number of reactions X observed per
unit time and unit volume. The quantity nb na |va| at the denominator can be written
in terms of the density and velocity in the generic reference frame by means of the
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relative velocity of Eq. (1.20), so that:

σ =
(
dNX/dt d3r

)

na nb

√
(va − vb)2 − (va × vb)2/c2

=
(
dNX/dt d3r

)

na nb vrel
, (1.288)

see Problem 1.11. Under a generic boost the numerator of Eq. (1.288) is invariant,
since dNX is a pure number and d4x ≡ dt d3r is invariant under transformations of
the Poincaré group, see Problem 1.2. The same holds for the combination na nb vrel,
as discussed in Problem 1.3: the cross section is therefore a Lorentz-invariant.

We now come back to the early definition of Eq. (1.285) and introduce the useful
concept of interaction length. Let’s consider a uniform flux density Ja = Φa/A,
with Φa being the total flux across the surface A ([Φ] = s−1) irradiating a target of
thickness δx and uniform particle density nb. From Eq. (1.285) we have:

dNX

dt
= Φa

A
· (nb · A · δx) · σ = Φa(nb δx)︸ ︷︷ ︸

L

·σ. (1.289)

The quantity nb δx is the surface density of the target, and oncemultiplied by the flux,
it gives the luminosity L of a fixed target experiment. Notice that [L ] = cm−2 s−1.
For different beam structure, the luminosity can be still defined from Eq. (1.288) as
the coefficient of proportionality between the total event rate and the cross section,
see Sect. 3.3.

Dividing both sides of Eq. (1.290) by the incoming flux Φa, the probability of
interaction per incoming particle is obtained:

1

Φa

dNX

dt
= probability of interaction per particle = (nbσ) · δx, (1.290)

so that nb σ is the probability of interaction per particle and per unit length, and its
inverse

λ ≡ 1

nb σ
, (1.291)

is called interaction length of the process under consideration. Since λ−1 is a prob-
ability of interaction per incoming particle and per unit length, in the presence of
multiple exclusive processes of interaction between a and b, the probability of any
such interaction is given by the sum of all probabilities, and the total interaction
length is therefore given by the inverse of the sum of all inverse interaction lengths.

The differential cross section for a scattering p1 p2 → p3 . . . pn can be calculated
theoretically using the formula:

dσ(p1, p2; p3, . . . , pn) = 1

4 I(p1, p2)
|M (p1, . . . , pn)|2 dΦn(p1 + p2; p3, . . . , pn)

(1.292)

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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where the incoming and outgoing particles are asymptotic states of the free Hamil-
tonian, i.e. eigenstates of the linear momentum and spin, and:

• I(p1, p2) is the invariant discussed in Problem 1.3, and accounts for the incoming
particle flux. Indeed, the factor 4 I = (2E1) (2E2) vrel is just but the product of
the two beam densities times their relative velocity as in Eq. (1.288). For a free
particle, the space density is given by the squared norm of the wave function
|ψp(r)|2 = 2Ep. The choice of wave function normalisation is convention as long
as it is used consistently. For example, another popular normalisation is the non-
relativistic normalisation of Eq. (1.211);

• M is the relativistic scattering amplitude, see Eq. (1.186);
• dΦn is the relativistic phase-space measure of Eq. (1.184).

Spin indices are omitted in Eq. (1.293) to simplify the notation, although one should
always remember that the cross section depends in general on the spin vectors ri of
the scattered particles. When the incoming particles are unpolarised and spin is not
observed, one can replace the matrix element squared in Eq. (1.293) by

∑
|M | ≡

∑
r1,...,rn

|M |2
(2S1 + 1)(2S2 + 1)

, (1.293)

which has often the virtue of greatly simplifying the calculations.

Problems

Problem 1.53 Prove that the differential cross section for a 2 → 2 scattering in the
centre-of-mass frame can be written as:

dσ

dΩ∗ = 1

64π2s

|p∗
f |

|p∗
i |

|M |2, (1.294)

where |p∗
i | and |p∗

f | are the centre-of-mass momenta before and after the scattering.

Solution

The relativistic invariant I at the denominator of Eq. (1.293) can be also written as:

I2 = (p1p2)
2 + m2

1 m2
2 = (s − m2

1 − m2
2)

2 + 4m2
1 m2

2

4
= s |p∗|2, (1.295)

where the identity has been proved in Eq. (1.91). By making use of the two-
body phase-space measure expressed in terms of the centre-of-mass solid angle,
see Eq. (1.188), we get:

dσ = 1

4 |p∗
i |

√
s
|M |2 1

16π2

|p∗
f |√
s

dΩ∗ ⇒ dσ

dΩ∗ = 1

64π2 s

|p∗
f |

|p∗
i |

|M |2, (1.296)
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If the scattering amplitude is normalised using a non-relativistic normalisation, then
the above expression becomes:

1

64π2s

|p∗
f |

|p∗
i | |M |2 = 1

64π2

(2E∗
1 ) (2E∗

2 ) (2E∗
3 ) (2E∗

4 )

(E∗
1 + E∗

2 )(E∗
3 + E∗

4 )

|p∗
f |

|p∗
i | |MNR|2 =

= 1

4π2
1(

1
E∗
1

+ 1
E∗
2

) (
1

E∗
3

+ 1
E∗
4

)
|p∗

f |
|p∗

i | |MNR|2 = 1

4π2

|p∗
f |2

(|v1| + |v2|) (|v3| + |v4|) |MNR|2

= 1

4π2

|p∗
f |2

vi
rel vf

rel

|MNR|2, (1.297)

where the relative velocity has been used.

Discussion

Consider the 2 → 2 scattering a b → c d. Suppose that both this reaction, denoted
by (1), and its time-reversed c d → a b, denoted by (2), can be performed in the
laboratory under controlled conditions. In particular, if the two reactions are studied
at the same centre-of-mass energy, and if the scattering particles are unpolarised and
the measurement is inclusive with respect to the spin of the final-state particles, then
Eq. (1.293) together with Eq. (1.296) implies

(
dσ(1)/dΩ∗)
(
dσ(2)/dΩ∗) = (2Sc + 1)(2Sd + 1)

(2Sa + 1)(2Sb + 1)

( |p∗
cd |

|p∗
ab|
)2

, (1.298)

where one has to further assumed that the interaction is invariant under time-reversal
so that the spin-averaged matrix element squared for (1) and (2) are identical at the
same centre-of-mass angle cos θ∗. If the spin of three of the four particles is known,
the spin of the fourth can be measured by comparing the event rates of (1) and (2).
As an example, this technique was employed by Steinberger et al. [22] to measure
the spin of the charged pion profiting from the reaction π+ d → p p and its inverse
p p → π+ d, which could be both obtained in fixed-target collisions.

Suggested Readings

The measurement of the pion spin from detailed balance arguments is documented
in Ref. [22]. An introduction to the same topic can be found in Chap.2 of Ref. [12].

Problem 1.54 What is the π+p cross section at the peak of theΔ(1232) resonance?
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Discussion

When the centre-of-mass energy E∗ approaches the mass E0 of a resonance of spin
J and width Γ , the scattering cross section between two unpolarised particles with
spin S1 and S2, detected in the channel f , is described by the Breit–Wigner formula:

σf (E
∗) = 4π

|p∗|2
2J + 1

(2S1 + 1)(2S2 + 1)

Γ 2/4

(E∗ − E0)2 + Γ 2/4
BRi BRf , (1.299)

where BRi,f are the branching ratio of the resonance into the initial and final state
particles, respectively, and p∗ is the centre-of-mass momentum given by Eq. (1.91).

Solution

According to the Breit–Wigner formula of Eq. (1.299), the cross section at the peak
is independent of the width Γ and depends only on the resonance mass E0:

σΔ = 8π

|p∗|2 = 32π m2
Δ[

m2
Δ − (mp + mπ )2

] [
m2

Δ − (mp − mπ )2
] =

= 485 GeV−2 = 188 mbarn, (1.300)

where we have used the values BRπ+p = 1, J = 3/2, Sp = 1/2, and Sπ = 0. In the
last row of Eq. (1.300), we have made use of Eq. (1.9) to convert the result into SI
units. This result is in good agreement with the experimental data, see e.g. Fig. 2.11
of Ref. [16].

Suggested Readings

A concise summary of the Breit–Wigner scattering can be found in the PDG review
dedicated to kinematics, Chap. 47 of Ref. [4].

Bando n. 18211/2016

Problem 1.55 How was it possible to measure the number of SM neutrino families
at LEP by studying the Z0 resonance?

Discussion

In the neighbourhood of the Z0 mass, the cross section for e+ e− → Z0 → hadrons
for unpolarised electron-positron beams features an energy dependence described by
a relativistic Breit–Wigner:



88 1 Kinematics

σhad(s) = 12π

m2
Z

Γe Γhad

Γ 2
Z

s Γ 2
Z

(s − m2
Z)2 + s2Γ 2

Z /m2
Z

, (1.301)

where ΓZ is the width at the Z0 mass, see Ref. [4]. In Eq. (1.301), the Breit–
Wigner width grows with s. Notice that the kinematic part of Eq. (1.301) reduces to
Eq. (1.299) when s ≈ m2

Z , Indeed:

s Γ 2
Z

(s − m2
Z )2 + s2Γ 2

Z /m2
Z

≈ m2
Z Γ 2

Z

(
√

s − mZ )2(
√

s + mZ )2 + m2
ZΓ 2

Z

= Γ 2
Z /4

(
√

s − mZ )2 + Γ 2
Z /4

.

(1.302)

Radiative corrections due to soft and collinear photon radiation from the incoming
leptons distort the lineshape by inducing an asymmetric tail and by reducing the peak
cross section to a value:

σ
peak
had = 12π

m2
Z

Γe Γhad

Γ 2
Z

(1 − δrad) ≡ σ 0
had(1 − δrad). (1.303)

In the SM, the Z0 boson width is given by the sum of the hadronic, leptonic, and
neutrino partial widths:

ΓZ = Γhad + Nν Γν + (3 + δτ )Γ�, (1.304)

where Nν is the number of neutrino families that couple to the Z0 and δτ is a phase-
space corrections that accounts for the large τ mass.

Solution

There are three main methods to measure at LEP the number of light and active
neutrinos, i.e. charged under the SM group.

The first method is based on subtracting the leptonic and hadronic width from
the total visible width ΓZ . This can be best implemented as fit to the lineshape of
the hadronic cross section σhad(s) of Eq. (1.301) measured at different value of

√
s.

By taking the SM values for δrad, Γhad, Γν , and Γe, the only unknown parameters
in the fit are mZ and Nν , which can be therefore simultaneously extracted from the
fit. It should be noticed that the sensitivity to Γν arises from both the width of the
Breit–Wigner and from the cross section value at the peak. The result published by
the ALEPH Collaboration in 1989 gave a result

Nν = 3.27 ± 0.30 and Nν < 4 at 98% CL. (1.305)

The lineshape-based analysis relies on model assumptions for the partial widths
and on the lineshape itself. Part of these assumptions can be relieved by using addi-
tional observables measured at the Z0 peak. The ratio between the hadronic and
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leptonic decay widths, R0
� = Γhad/Γ�, is an observable that could be measured to

large accuracy at LEP. By assuming universality of the charged lepton coupling to
the Z0 boson, the ratios R0

e , R0
μ, and R0

τ can be assumed identical, modulo the mass-
related corrections for τ leptons, encoded in a correction factor R0

τ /R0
� ≡ 1+ δτ . By

using the hadronic cross section at the peak, σ 0
had, one can therefore express the ratio

R0
inv ≡ Γinv/Γ�, as a function of mZ , σ 0

had, and R0
� as:

σ 0
had = 12π

m2
Z

Γe Γhad

Γ 2
Z

= 12π

m2
Z

R0
�

(R0
inv + 3 + δτ + R0

�)
2
,

R0
inv =

(
12π R0

�

m2
Z σ 0

had

) 1
2

− R0
� − (3 + δτ ). (1.306)

If one further assumes that the total width arises from neutrinos, the value of R0
inv

thus obtained can be related to the number of active light neutrinos as:

R0
inv = Nν Γ SM

ν

Γ SM
�

⇒ Nν = R0
inv

(
Γ�

Γν

)

SM

(1.307)

The combined result from the four LEP experiments is Nν = 2.984 ± 0.008 [23].
The third method is based on a direct measurement of the invisible width Γ 0

inv
from the cross section of the process e+ e− → ν ν̄ γ , where the final-state radiation
(FSR) photon is required to trigger the event. The combined LEP measurement gave
a result of Nν = 2.92 ± 0.05, compatible with the method of Eq. (1.307), although
plagued by larger uncertainties.

Suggested Readings

The measurement of the number of light neutrino families from the Z0 lineshape is
documented in Ref. [24]. The details on the combined LEP measurement of Nν can
be found in Ref. [23]. See also the dedicated PDG review on this subject [4] for more
details.

Problem 1.56 A neutral narrow resonance X of mass M, natural width Γ , and
spin J , is produced in proton-proton collisions at a centre-of-mass energy

√
s and

detected through its decay to a pair of photons. Two partonic channels contribute to
the resonance production: q q̄ → X and g g → X. Write down the LO cross section
for p p → X → γ γ in terms of the resonance parameters and of the proton PDF.

Solution

At LO in perturbation theory, the production amplitude is described by the s-channel
diagrams q q̄ → X and g g → X, followed by the disintegration of X into a pair of
photons. For values of the partonic centre-of-mass energy ŝ in the neighbourhood of
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M2, the partonic cross section is described by the relativistic Breit–Wigner similar
to Eq. (1.301). In high-energy hadron-hadron interactions, the cross section can be
factorised into a short-distance component, characterised by an energy scale ŝ, and a
long-distance component that accounts for the parton distribution inside the protons,
described by the gluon, quark, and antiquark PDF’s:

σ =
∫

dx1 dx2

[∑
ij fi(x1, ŝ) fj(x2, ŝ)

1 + δij

]
σ̂ (ŝ = x1 x2 s),

with σ̂ = 16π

M2

(2J + 1)

ρi ρj

Γγγ Γij

Γ 2

M2Γ 2

(ŝ − M2)2 + M2Γ 2

(
1 + δij

)
(1.308)

Here, fi(x, ŝ) is the PDF of parton i evaluated at the momentum fraction x and at a
factorisation scale ŝ, see e.g. Ref. [18]. All of the short-distance physics is encoded in
the partonic cross section σ̂ , which is parametrised as in Eq. (1.301). For unpolarised
initial-states, one has to average over the possible configurations of quantumnumbers
as described by the appropriate density matrix, resulting in a dilution factor ρi and
ρj. The symmetry fractor (1+ δij) accounts for the undistinguishability of the initial-
state particles. An heuristic motivation for this extra factor will be provided later.
Notice that the energy-dependence of the width has been suppressed because we can
work under the assumption that Γ � M, so that ŝ ∼ M2. Under this narrow-width
assumption, we can further approximate the Breit–Wigner by a delta function:

1

(ŝ − M2)2 + M2Γ 2
≈ π

M Γ
δ(ŝ − M2). (1.309)

The factor of π at the numerator ensures the proper normalisation, as one can readily
verify by integrating both sides of Eq. (1.309) over ŝ. The total cross section thus
become:

σ = 16π2

MΓ

(2J + 1)

ρi ρj
(1 + δij)Γγγ Γij

∫
dx1 dx2

[∑
ij fi(x1, ŝ) fj(x2, ŝ)

1 + δij

]
δ(x1 x2 s − M2)

= (2J + 1)

M Γ s
Γγγ Γij

∑

ij

16π2

ρi ρj

∫ 1

τ≡ M2
s

dx

x
fi(x, ŝ) fj

( τ

x
, ŝ
)

︸ ︷︷ ︸
=Cij(τ )

≡ (2J + 1)

M Γ s
Γγγ

∑

ij

Cij

(
M2

s

)
Γij (1.310)

The long-distance physics in fully encoded into the parton luminosity factor Cij(τ ).
Specialising Eq. (1.310) to the case of interest, we have:

σ = (2J + 1)

M Γ s
Γγγ ×

{
Γgg × π2

8

∫ 1
τ

dx
x g(x) g

(
τ
x

)
g g → X

Γqq̄ × 4π2

9

∫ 1
τ

dx
x

[
q(x) q̄

(
τ
x

)+ q̄(x) q
(

τ
x

)]
q q̄ → X

(1.311)
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Table 1.1 Numerical value of the parton luminosity factors C(τ ) evaluated at τ = M2/s with
M = 750 GeV and

√
s = 13 TeV, and factorisation scale μ2 = M2, using the MSTW2008NLO

PDF set

Cdd̄ Cuū Css̄ Ccc̄ Cbb̄ Cgg

627 1054 83 36 15 2137

To derive this result, we have used the fact that the sum over the gluon PDF’s is
symmetric under i ↔ j, and that the density factors are

ρ =
{

1
2·2

1
N2

A
= 1

4·82 = 1
256 g g

1
2·2

1
N2

C
= 1

4·32 = 1
36 q q̄

(1.312)

For example, at a resonance mass M = 750 GeV and at a centre-of-mass energy√
s = 13 TeV, the parton luminosities using the MSTW2008NLO PDF set are

reported in Table1.1. In one further assumes that one production channel dominates
over the others (for example, due to the largeness of Cij(τ ) or of the partial width
Γij), then, by measuring σ , M, and Γ , one can constrain the product of the branching
ratios into photons and into the channel ij in the combination:

BR(X → γ γ ) · BR(X → i j) = σ s

(2J + 1) Cij

M

Γ
. (1.313)

Discussion

We now give an heuristic motivation for the symmetry factor (1 + δij) appearing in
the Breit–Wigner of Eq. (1.308). Consider for example the case of a spin-0 particle
produced in the s-channel by massless particles a, and decaying to a pair of massless
particles b. The cross section can be computed directly from Eq. (1.293) using the
spin-average of Eq. (1.293):

σ =
∑

r1,r2

∑

r3,r4

1

ρ2a

1

4|p∗|√s

∫
dΦ2 |Ma|2 1

(s − M2)2 + Γ 2M2
︸ ︷︷ ︸

propagator

|Mb|2 =

= 1

2M2ρ2a
2M

1

2M

∑

r3,r4

∫
dΦ2 |Mb|2

︸ ︷︷ ︸
Γb

[
1

(s − M2)2 + Γ 2M2

]
2M

Φ2

1

2M

∑

r1,r2

|Ma|2Φ2

︸ ︷︷ ︸
Γa

= 2 (Φ2)
−1

M2
BRa BRb

ρ2a

M2Γ 2

(s − M2)2 + Γ 2M2 , (1.314)

where we have approximated |p∗| = M/2 and
√

s = M. The two-body phase-space
for massless particles is given by Eq. (1.189). If the particles are distinguishable, one
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has to integrate over the full solid angle, giving Φ2 = 1/8π , and the usual factor
of 16π at the numerator, whereas identical particles give a factor of two smaller
phase-space, hence the symmetry factor (1 + δij) of Eq. (1.308).

Suggested Readings

A putative new high-mass resonance decaying to a pair of photons at a mass of about
750 GeV was reported by both the ATLAS and CMS Collaborations in December
2016 [25, 26]. The analysis of additional data, however, disproved the excess, which
was then attributed to a mere statistical fluctuation of the background, dominated by
prompt diphoton production, see e.g. Ref. [27]. A lot of theoretical speculation was
stimulated by the early observation, see e.g. Ref. [28] for further details.

Bando n. 18211/2016

Problem 1.57 An excited state of 57Fe decays by emitting a 14.4 keV photon (t1/2 =
68 ns). Determine the FWHM of the energy distribution of the emitted photon.

Solution

The spectral width Γ and decay time τ are related by the relation Γ = �/τ , see
Eq. (1.187), or, in natural units, Γ = τ−1. By using Eq. (1.8), we can express t1/2 in
keV−1, giving:

Γ = τ−1 = ln 2

t1/2
= 6.7 × 10−12 keV, (1.315)

If a Breit–Wigner distribution as in Eq. (1.299) is assumed, the full-width-at-half-
maximum is given by ΓFWHM = Γ = 0.7×10−11 keV. The relative width ΓFWHM/E
is therefore of order 10−12, and thus too small to be measured in spectroscopy.

Discussion

The natural width of spectral lines is generally very small. In hot media, the energy
resolution is dominated by other effects, like collisional and Doppler broadening.

Problem 1.58 In classical mechanics, the differential cross section dσ/dΩ of a
particle of mass m and momentum p scattered by a central potential is given by the
formula:

dσ

dΩ
= b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ , (1.316)

where dΩ = dφ d cos θ is the solid angle parametrised by the polar and azimuthal
angles with respect to p, and b = b(θ, |p|) is the so-called impact parameter, i.e. the
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Fig. 1.15 Cartoon showing
the classical scattering of a
particle against a central
potential

p′

θ

b

b(θ, |p|)

p

dσ = 2πb db

distance from the polar axis at time t = −∞ of those particles that get scattered at
an angle θ at time t = +∞. Use this formula to derive the Rutherford cross section
for a particle of charge e scattered by a heavy nucleus with charge Z e.

Discussion

It is easy to verify that Eq. (1.316) gives the correct result. Let’s imagine that the
source of the potential is located at the origin of the reference frame. Those particles
that at time t = +∞ are scattered at a polar angle θ have momentum p′ = |p| eθ .
Since the potential is central, angular momentum with respect to the origin is con-
served: all particles with impact parameter b will end up at the same polar angle θ ,
hence it’s possible to define a function b = b(θ, |p|), see Fig. 1.15. By definition,
dσ = d2b = b db dφ is the infinitesimal cross section for scattering at the polar
angle centred around (θ, φ), hence:

dσ

dφ
= b db ⇒ dσ

dφ d cos θ
= b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ (1.317)

If the classical source is replaced by a pointlike source of finite mass M, Eq. (1.317)
still holds provided that the polar angle θ is measured in the centre-of-mass frame,
and m and |p| gets replaced by the reduced mass μ = m M/(M + m) and centre-of-
mass momentum, respectively.

Solution

We need to compute b(θ, |p|) for the Coulomb potential. To this purpose, it is con-
venient to exploit the time-invariance of L = r × p. In the orbital plane, with
the x-axis parallel to the initial momentum, the momentum after the scattering is
p′ = |p|(cos θ, sin θ). The angular momentum for a particle with impact parameter
b is given by
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|L| = −m|r|2 dθ

dt
= |p|b ⇒ dt = −m|r|2

|p|b dθ. (1.318)

The Coulomb potential V (r) and its Fourier transform Ṽ (q) for a point-like source
of charge Z e at the origin are given by

V (r) = Z e

4π |r| , Ṽ (q) = Z e

|q|2 , (1.319)

so that

dpy

dt
= −∂zV (r) = Z e2

4π |r|2 sin θ(t),

dpy = Z e2

4π |r|2 sin θ

(
−m|r|2

|p|b
)

dθ = − m Z e2

4π |p|b sin θ dθ

|p| sin θ =
∫ θ

π

dpy = m Z e2

4π |p|b
∫ π

θ

dθ ′ sin θ ′ = m Z e2

4π |p|b (1 + cos θ) , (1.320)

from which we get the relation:

b(θ, |p|) = m Z e2

4π |p|2
1 + cos θ

sin θ
= m Z e2

4π |p|2 tan θ
2

. (1.321)

Using Eq. (1.317), we thus obtain:

dσ

dΩ
= 1

sin θ

m Z e2

4π |p|2 tan θ
2

∣∣∣∣∣
m Z e2

4π |p|2
(

− 1

tan2 θ
2

)
1

2 cos2 θ
2

∣∣∣∣∣ =

= 1

4

(
m Z e2

4π |p|2
)2 1

sin4 θ
2

=
[

Z α(� c)

4T sin2 θ
2

]2
(1.322)

where T = |p|2/2m is the kinetic energy of the particle and α = e2/(4π�c), which
reproduces the well-known non-relativistic Rutherford’s formula. See Problem 1.59
for its relativistic generalisation. In natural units, Rutherford’s formula becomes:

dσ

dΩ
=
[

Zα

4T sin2 θ
2

]2
, (1.323)

and the conversion into MKS units can be done by either remembering that α →
(1/137) · 197 MeV fm, or by using the conversion GeV−2 → mbarn of Eq. (1.9).

The above result, which has been obtained according to the laws of classical
mechanics, coincides with the (non-relativistic) quantum-mechanical expectation
from the exchangeof a virtual photon. Indeed, the amplitude squared for the scattering
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is |MNR|2 = |Ṽ (q)|2 = Z2e4/|q|4, where q is the four-momentum exchange. Since
that the reaction is elastic, the velocity and centre-of-mass momenta are identical
before and after the scattering, and Eq. (1.297) gives:

dσ

dΩ
= 1

4π2

|p∗|2
v∗2
rel

Z2 e4

|q|4 . (1.324)

For the Rutherford scattering, |q| = 2|p| sin θ/2, vrel = |v|, and the centre-of-mass
frame coincides with the laboratory frame if m � M, M being the mass of the source
generating the potential. Hence, Eq. (1.324) can be written as:

dσ

dΩ
= 4

(4π)2

Z2 e4 |p∗|2
16|v|2|p∗|4 sin4 θ

2

=
[

Z α

4T sin2 θ
2

]2
, (1.325)

which agrees with Eq. (1.323).

Problem 1.59 The differential cross section of a spin-1/2 particle of mass m scat-
tering against a point-like heavy particle is described by the Mott formula:

dσ

dΩ
=
[

α

2|p|2 sin2 θ
2

]2 (
m2 + |p|2 cos2 θ

2

)
, (1.326)

where p is the electron momentum.

• Show that the formula reduces to the Rutherford cross section in the classical limit
|p| � m.

• What is the value of the total cross section σ?
• Show that in the ultra-relativistic limit the formula reduces to:

dσ

dΩ
≈ α2 cos2 θ

2

4E2 sin4 θ
2

, (1.327)

where E is the total relativistic energy. What is the reason behind the cos2 θ/2
dependence of the cross section, which is not present in Rutherford’s formula?

Discussion

The well-known Rutherford’s formula applies to the non-relativistic scatettering
between two charged particles, a moving projectile and a steady target, the latter
being much heavier than the former so that the scattering occurs without any energy
transfer, see Fig. 1.16. Indeed, the very same formula can be obtained by using the
classical picture of a point-like charged particle interacting with the static electric
field of the target, see Problem 1.58.
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Fig. 1.16 Cartoon of the
scattering of an electron off a
much heavier particle of
mass M

p

p′

e−

e−

M

θ

Solution

In the limit |p| � m, the formula of Eq. (1.326) reduces to:

dσ

dΩ
≈
[

α

2(mv)2 sin2 θ
2

]2
m2 =

[
α

4T sin2 θ
2

]2
, (1.328)

where T is the kinetic energy, T ≡ E − m.
The total cross section is obtained by integrating the differential cross section over

the full solid angle. For θ ∈ [0, ε], ε � 1, the integral goes like:

∫ ε

0
dθ sin θ

1

sin4 θ
2

∼
∫ ε

0
dθ

θ

θ4
=
∫ ε

0

dθ

θ3
= +∞. (1.329)

This is a consequence of the electromagnetic interaction range being infinite.
In the ultrarelativistic limit |p| ≈ E � m, the Mott formula reduced to:

dσ

dΩ
≈
[

α cos θ
2

2E sin2 θ
2

]2
= α2 cos2 θ

2

4E2 sin4 θ
2

. (1.330)

The cos θ/2 term at the numerator arises from the spin-1/2 nature of the electron:
since the electromagnetic interaction does not change the chirality, an initial rela-
tivistic fermion of a given chirality will also have a fixed helicity h as discussed in
Problems 1.6 and 1.8. A left-handed electron with h = −1/2 cannot be scattered
exactly backward, since this configuration would result in a spin-flipped state, thus
changing the Jz component of the state along the scattering axis.

Problem 1.60 Two ion beams, one composed of 4
2He

+ ions and the other of A
3Li

+
ions of unknown mass number A, collide against a fixed gold target. A velocity
selector filters ions of the same initial velocity |v| = 0.1 c. The two beams provide
the same integrated flux. A particle detector, located at a polar angle θ with respect
to the beam direction, counts the number of scattered ions. The ratio between the
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number of countings for the two beams is R = NHe/NLi = 3.0 ± 0.1. What is the
most probable mass number A of the lithium ions?

Solution

Given that the target nuclei are much heavier than any of the two ions, and that
the ion velocity is small enough to treat the scattering particles as classical, we can
use Rutherford’s formula (1.323). Under the conditions assumed by the problem,
deviations between the two event counts can only arise from differences in the mass,
velocity, or charge of the two beams, i.e.:

R = NHe

NLi
=
(

mLi

mHe

|vLi|2
|vHe|2

ZHe

ZLi

)2

=
(

A

4

)2

, A = √
R · 4 = 6.93. (1.331)

By propagating the error on the ratio, we find

δA

A
= 1

2

δR

R
, (1.332)

from which we estimate A = (6.93 ± 0.11), which is compatible with the closest
integer to the 1σ level. The most probable value for the mass number of the lithium
ions is therefore A = 7, which corresponds indeed to a stable isotope.

Problem 1.61 A beam of alpha particles of energy T = 0.1 GeV collides against a
fixed target of aluminium (density ρ = 2.7 gcm−3, molar mass A = 27 g/mol) of
thickness of d = 1 cm. The beam flux at the target is Φ = 109 s−1. A scintillating
detector is placed at an angle θ = 30◦ from the beam axis, and L = 1 m away from
the target. The active surface of the detector has a cross section of 1 cm × 1 cm as
seen from the target. Estimate the counting rate measured by the detector.

Solution

The instantaneous luminosityL of the experimental set-up is given by Eq. (1.290):

L = Φ
ρ NA

A
d = 109 s−1 · 2.7 g cm−3 · 6.02 × 1023 mol−1

27 g mol−1 · 1 cm

≈ 6 × 1031 cm−2s−1. (1.333)

Using the Rutherford’s cross section formula (1.323), we get:

dσ

dΩ
(θ) = Z2

α Z2
Al α

2

16T 2 sin4 θ
2

= 22 · 132 · (1/137)2

16 · 0.12 · sin4( 30·π/180
2 )

= 50.2 GeV−2/std =
(1.334)

= 1.95 · 10−26 cm2/std. (1.335)
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The last equality in Eq. (1.334) comes from the conversion GeV−2 → cm2, see
Eq. (1.9). The integrated cross section in a small solid angle ΔΩ = (1 cm ×
1 cm)/1 m2 = 10−4 std is therefore given by:

σ ≈ dσ

dΩ
(θ) · ΔΩ = 1.95 × 10−30 cm2. (1.336)

Using the instantaneous luminosity of Eq. (1.333), we therefore expect an average
rate of

dN

dt
= L σ ≈ 120 Hz. (1.337)

Problem 1.62 Abeammade ofπ+ andK+ withmomentum |p| = 5GeV is directed
towards a bubble chamber filled with liquid hydrogen. Events where an energetic δ-
ray is produced are selected and the energy of the emitted electron is measured with
negligible uncertainty. Determine the minimum kinetic energy T of the δ-ray such
that the incoming particle can be unambiguously identified as a pion. Estimate the
probability of such events if the chamber has a total length L = 1 m.

Solution

Thediscrimination betweenpions andkaons is possible because themaximumenergy
transfer at fixed momentum |p| decreases with the mass of the incoming particle, see
Problem 1.26. Indeed, according to Eq. (1.141), we have

Tmax = 2me|p|2
m2

e + M2 + 2me

√|p|2 + M2
=
{
1.05 GeV π+

103 MeV K+ (1.338)

Therefore, any δ-ray with energy above 103 MeV can be assumed to originate from
a pion scattering.

To compute the probability of a δ-ray emission with energy TK
max ≤ T ≤ Tπ

max, we
integrate the differential cross section. This is best done by expressing the differential
cross section as a function of the four-momentum transfer q2, giving:

q2 = −|q∗|2 = −4|p∗|2 sin2 θ∗

2
⇒ dΩ∗ = dφdq2

2|p∗|2 . (1.339)

Inserting this last expression into Eq. (1.324), we get:

dσ

dq2
= 1

4π2

|p∗|2
v∗2
rel

Z2e4

q4

π

|p∗|2 = 4π

v∗2
rel

Z2α2

q4
, (1.340)

where vrel is the relative velocity in the centre-of-mass frame frame. The latter can
be expressed in terms of the velocity v of the beam particles in the laboratory frame
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through Eq. (1.52):

v∗
rel = |v|(1 + β∗

e β∗
π ), (1.341)

where β∗
e and β∗

π are the velocities in the centre-of-mass frame. The latter can be
computed from Eqs. (1.91) to (1.89). Since the pion mass is much larger than the
electron mass, we can approximate:

β∗
e ≈ s − m2

π

s − m2
π

≈ 1, β∗
π ≈ s − m2

π

s + m2
π

≈ me E

m2
π + me E

= 0.12. (1.342)

Furthermore, if we denote the four-momentum of the initial (final) electron by k (k′),
it follows that

k′ = k + q, m2
e = m2

e + 2meq0 + q2, q0 = −q2

2me
. (1.343)

Since q0 = T , we can easily transform Eq. (1.340) into a cross section differential
in the kinetic energy of the recoiling electron:

dσ

dT
= 2π Z2α2

v∗2
rel me

1

T 2
. (1.344)

The total cross section for T in the range [TK
max, Tπ

max] is therefore given by:

σ =
∫ Tπ

max

TK
max

dσ

dT
= 2πZ2α2

v∗2
rel me

(
1

TK
max

− 1

Tπ
max

)
=

= 2π · ( 1
137 )2(197)2 MeV2 10−26 cm2

0.511 MeV

(
1 + m2

π/|p|2
)2

(1 + 0.12)2

(
MeV−1

103
− MeV−1

1.05 × 103

)

= 1.8 × 10−27 cm2. (1.345)

The probability p of such an emission across a length L = 1 m can be estimated by
introducing the interaction length of Eq. (1.291):

p ≈ L

λ
= L ·

(
σ

ρ NA

A

)
=

102 cm · 1.8 × 10−27 cm2 · 0.06 g cm−3 · 6.02 × 1023 mol−1

1 g mol−1 = 6.5 × 10−3

(1.346)

where we have used the value ρ = 0.06 g cm−3 for the mass density of liquid
hydrogen. Notice that this probability comes out to be small, thus justifying the use
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Fig. 1.17 Probability of
single collisions in which
released electrons have an
energy E or larger (left scale)
and practical range of
electrons in Ar/CH4 (P10) at
NTP (dot-dashed curve, right
scale). Taken from Ref. [4]

of Eq. (1.346) to estimate the probability of interaction (otherwise we should have
taken the cumulative of the exponential distribution, see Problem 2.14).

Discussion

According to Eq. (1.344), the probability of emitting an electron of energy equal or
larger than T follows an approximate T−1 law, see e.g. Fig. 1.17 taken from Ref. [4].
This property is relevant in gaseous detectors which detect the passage of a particle
by the ionisation trail left behind by the passage of a charged particle, see Chap. 2.
The emission of energetic electrons, whose range scales like T 2 (see Problem 2.3),
sets an intrinsic limitation to the position accuracy achievable by such detectors.

Suggested Readings

This problem is inspired from a similar exercise that can found in Ref. [16], Chap. 11.
The reader is recommended to study in detail that chapter to find more information
on the subject.

Bando n. 13705/2010

Problem 1.63 A neutron beam passes through a chamber of length d = 1 m which
can be either empty or filled with hydrogen at 20 ◦C and 760 mmHg. The neutrons
are detected by a counter located at the end of the cylinder. By using the same beam,
5× 106 countings are measured when the chamber is empty, and 4.6× 106 when the
chamber is filled with H2. Estimate the neutron-proton cross section and its statistical
uncertainty.

Solution

Let’s denote the detection efficiency of the detector by ε. The number of countings
for the two set-up is given by Eq. (1.290), namely:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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{
N1 = N0 ε (1 − 2 n d σ)

N2 = N0 ε
(1.347)

where N0 is the total number of neutrons entering the chamber, n is the molecular
density of the gas when the chamber is filled, and σ is the total neutron-proton cross
section. The factor of two in front of the gas density accounts for the fact that each
hydrogen molecule contains two protons. The molecular density n can be obtained
from the law of ideal gases P V = N R T , withN = N/NA, from which:

n = N

V
= P NA

R T
= 760 · 133 Pa · 6.02 × 1023 mol−1

8.314 J mol−1 K−1 · 293 K
= 2.5 × 1019 cm−3.

(1.348)

Taking the ratio between the two countings, the unknown efficiency ε cancels, giving:

N1

N2
= 1 − 2 n d σ, σ =

(
N2 − N1

N1

)
1

2 n d
=

=
(
5.0 × 106 − 4.6 × 106

5.0 × 106

)
1

2 · 2.5 × 1019 cm−3 · 102 cm = 16 barn. (1.349)

The event counts are uncorrelated and large enough so that the Gaussian statistics
applies, see Problem 4.11. By standard error propagation, see Sect. 4.2, it follows
that:

(δσ )2 ∝
(

N2

N2
1

)2

(δN1)
2 +

(
1

N1

)2

(δN2)
2 =

(
N2

N1

)2 ( 1

N1
+ 1

N2

)
,

δσ

σ
=
√

N2

N1

√
N1 + N2

N2 − N1
= 0.8 × 10−2, (1.350)

hence: σ = (16 ± 1) barn.

Bando n. 1N/R3/SUB/2005

Problem 1.64 A neutrino beam of mean energy 〈Eν〉 = 20 GeV is produced from
the decay of charged pions. Estimate:

• the energy of the pion beam (assumed monochromatic) that has generated the
neutrino beam;

• the divergence of the neutrino beam at the far-end detector located at a distance
d = 100 km downstream of the beampipe;

• the order-of-magnitude for the neutrino-nucleon cross section;
• the mean free path of the neutrinos in a detector with the density of water;
• the ratio between the cross section on protons and on electrons.

http://dx.doi.org/10.1007/978-3-319-70494-4_4
http://dx.doi.org/10.1007/978-3-319-70494-4_4


102 1 Kinematics

Solution

From Problem 1.19 and (1.109), we know that the energy of the neutrino in the
laboratory frame is uniformly distributed in the range E∗

ν (γ ± √
γ 2 − 1), where

E∗
ν = (m2

π − m2
μ)/2mπ is the centre-of-mass energy of the neutrino in the most

probable decay π+ → μ+ νμ, and γ = Eπ/mπ . The mean energy is therefore:

〈Eν〉 = γ E∗
ν =

(
Eπ

mπ

)
m2

π − m2
μ

2mπ

⇒ Eπ = 2 〈Eν〉
1 − (mμ/mπ )2

= 96 GeV.

(1.351)

For a massless neutrino, the polar angle in the laboratory frame can range up to π

radians. However, for large boosts, the probability of decaying at an angle θ � 1/γ
is negligible. Since γ ≈ 670 � 1, we can make use of Eqs. (1.73) and (1.76) to
obtain:

〈θ〉 ≈ 2.3 × 10−3, σθ ≈ 4.9 × 10−3, θ90% ≈ 4.5 × 10−3. (1.352)

Taking the 90%quantile as an estimator of the beamdivergence of the far-end detector
located at d = 100 km, we get a beam spread of about 450 m along the transverse
coordinate.

The charged-current (CC) neutrino cross section on an isoscalar target in the deep
inelastic scattering (DIS) regime, appropriate for this value of the neutrino energy,
can be computed by using the effective Fermi Lagrangian of Eq. (2.82), giving:

σνd = G2
F s

4π2
, σνū = G2

F s

4π2

(1 + cos θ)2

4

⇒ σνN = 1

2

(
σνp + σνn

) = G2
F

π
M Eν

[
Q + Q̄

3

]
, (1.353)

whereQ = ∫ dx x q(x) (Q̄ = ∫ dx x q̄(x)) is the averagemomentumcarried by quarks
(antiquarks) inside the proton, and M indicates the average nucleon mass. See e.g.
Ref. [4] formore informations. For anti-neutrinos, one needs to swapQ ↔ Q̄. Taking
M = 0.938 GeV, and using Eq. (1.9) to convert the result into SI, we get:

σνN = (1.166 GeV−2)2

π
· 0.938 GeV · Eν

[
Q + Q̄

3

]

≈ 1.56 × 10−38 cm2

(
Eν

GeV

)[
Q + Q̄

3

]
. (1.354)

The mean free-path for neutrinos in a medium of density ρ = 1 g cm−3 is given
by Eq. (1.291). From DIS experiments, one measures Q̄ � Q ≈ 0.5, see e.g.
Problem 5.20. Thus, we get:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_5
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λ = A

σ ρ NA
= 18 g mol−1

1.56 × 10−38 cm2 · 20 · 0.5 · 1 g cm−3 · 6.02 × 1023 mol−1

≈ 2 × 1014 m. (1.355)

The same effective theory predicts the total cross section of the CC interaction
νμ e− → μ− νe to be as the first of Eq. (1.353):

σνe = G2
F s

π
= 2 G2

F

π
me Eν ⇒ σνe

σνN
= 2me

M
[
Q + Q̄/3

] ≈ 2 × 10−3. (1.356)

Suggested Readings

For more details on the interaction of high-energy neutrino with matter, the reader
is addressed to Chap.8 of Ref. [12]. A compendium of useful formulas can be also
found in Sect. 49 of Ref. [4].

Appendix 1

We report here a simple computer program in Pythonwhich implements Newton’s
method for finding the roots of a real-valued function f , specialised here to the case
where f is the first derivative of tan(φ) in Eq. (1.67) with respect to x ≡ cos θ∗.

After initialising the program with the values of β, β∗
1 , and β∗

2 , the roots of f are
searched for by iteratively incrementing the variable x as:

xi−1 → xi = xi−1 − f ′(xi−1)

f (xi−1)

starting from an initial value x0. The loop stops when the desired accuracy is attained,
i.e. Δxi/xi−1 < ε, or the maximum number of iterations is exceeded.

A critical point of such a method applied to the case of interest arises from the
fact that x ∈ [−1, 1], while the intermediate values xi may occasionally fall outside
of this range. When this happens, one can try tuning the starting value x0 until the
convergence is attained.



104 1 Kinematics

import math
class Newton:

def __init__(self, b0, b1, b2):
self.a = b0/math.sqrt(1-b0*b0)*(b1 + b2)/(b1*b2)
self.b = -b0*b0
self.c = b0*(b1-b2)/(b1*b2)
self.d = (b0*b0/(b1*b2)-1+b0*b0)
self.err = -1 #-1=NOT CONVERGED, 0=OK, 1=ERROR

# The first derivative of tan(phi) [=f in Newton’s method]
def f_prime(self, x):

# need to define a=self.a, b=self.b, ...
val = a*(b*x*x*x-(d+2*b)*x-c)/math.sqrt(1-x*x)/math.pow(b*x*x+c*x+d,2)
return val

# The second derivative of tan(phi) [=f’ in Newton’s method]
def f_second(self, x):

# need to define a=self.a, b=self.b, ...
val0 = a/math.pow(1-x*x,1.5)/math.pow(b*x*x*x + c*x +d,3)
val1 = (3*b*x*x - (d+2*b))*(1-x*x)*(b*x*x + c*x + d)
val2 = (b*x*x*x-(d+2*b)*x-c)*(-5*b*x*x*x-3*c*x*x-(d-2*b)*x+2*c)
return val0*(val1-val2)

# Do up˜to it_max iterations starting from x_start until accuracy<res
def iterate(self, x_start=0.0, it_max=10, res=0.01):

x_min = x_start
n_it = 0
for it in xrange(it_max):

n_it += 1
if abs(x_min)>1:

self.err = 1
break

f0 = self.f_prime(x_min)
f1 = self.f_second(x_min)
delta = -f0/f1
x_min += delta
if(abs(delta)<res):

self.err = 0
break

return (x_min, n_it)
# Run from command line: $ python newton.py
newton = Newton(b0=0.8, b1=0.3, b2=0.5)
result = newton.iterate(x_start=0.0, it_max=10, res=0.01)
print"Result:", result[0]

Appendix 2

The computer program below illustrates the generation of toy MC events where
an unpolarised resonance of mass M decays into a pair of massless particles. This
routine profits from a number of built-in functions available in ROOT that implement
a good deal of four-vectors algebra.
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import ROOT
import math

# the random number generator
ran = ROOT.TRandom3()

# M = resonance\index{Resonance} mass, ntoys = number of MC\index{Monte Carlo}
events, beta = boost vector\index{Boost}

def toys(M=80., ntoys=1000, beta=ROOT.TVector3(0., 0., 0.1)):

# this is the same for all events
E_cm = M/2.

for ntoy in xrange(ntoys):

# cos(theta*) is uniform in [-1,1], phi in [-pi,pi]
cos = ran.Uniform(-1,1)
phi = ran.Uniform(-math.pi, +math.pi)

# the 3-momentum in the centre-of-mass frame
v1_cm = ROOT.TVector3()
v1_cm.SetPx(E_cm*cos)
v1_cm.SetPy(E_cm*math.sqrt(1-cos*cos)*math.sin(phi))
v1_cm.SetPz(E_cm*math.sqrt(1-cos*cos)*math.cos(phi))
v2_cm = -v1_cm

# the 4-vectors in the centre-of-mass frame
p1_cm = ROOT.TLorentzVector(v1_cm, E_cm)
p2_cm = ROOT.TLorentzVector(v2_cm, E_cm)

# apply a boost to the lab frame
p1_cm.Boost(beta)
p2_cm.Boost(beta)

# compute mT and pT
pT_1 = math.sqrt(p1_cm.Py()*p1_cm.Py() + p1_cm.Pz()*p1_cm.Pz())
pT_2 = math.sqrt(p2_cm.Py()*p2_cm.Py() + p2_cm.Pz()*p2_cm.Pz())
mT2 = 2*pT_1*pT_2-2*p1_cm.Py()*p2_cm.Py()-2*p1_cm.Pz()*p2_cm.Pz()
mT = math.sqrt(mT2)
print "Result:", mT, pT_1
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Chapter 2
Particle Detectors

Abstract The subject of the second chapter is the interaction of particles with matter.
The first section discusses the mechanism by which various types of particles interact
with different media. Particular emphasis is given to the concept of energy loss and
range in matter. The second section focuses on the experimental techniques for
particle identification. The third section is dedicated to the functioning of particle
detectors.

2.1 Passage of Particles Through Matter

The kinematics of a particle moving through matter is affected by the interaction
with the medium, which can be traced back to one or multiple incoherent colli-
sions with the scattering centres, or to coherent effects that involve the medium as
a whole. When the interaction is elastic, the particle transfers to the medium part
of its energy or momentum at each collision. This is the case of the energy loss by
electron collision, multiple scattering, Compton scattering. Inelastic reactions absorb
or transmute the particle into something else, and can also give rise to new forms
of radiation or leave behind excited states. This is for example the case of photon
conversion, bremsstrahlung, neutron capture, charged-current neutrino interactions.
Depending on the particle type, on its energy, and on the properties of the medium,
one mechanism usually dominates over the others.

Energy Loss by Collision

Moderately relativistic charged particles lose energy mostly by the interaction with
the electromagnetic field of atoms (electron collision). In the 10−1 � βγ � 103

regime, the rate of energy loss per unit of traversed length, d E/dx , depends almost
exclusively on the particle velocity β and on the properties of the medium. The
formula describing the average rate of energy loss, or linear stopping power, is
called Bethe formula and is given by:

− d E

dx
= 2π NA ρ

Z

A

α2(�c)2

me c2

z2

β2

[
ln

2 me c2 γ 2 β2 Wmax

I 2 − β2 − δ(β) − 2
C(I, β)

Z

]
, (2.1)
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with:

NA, α Avogadro number (6.02 × 1023 mol−1) and fine structure constant (α ≈
1/137)

ρ, A, Z mass density (g cm−3), atomic weight (g mol−1), and atomic number of
the material

z, β, γ electric charge in units of e, velocity, and gamma-factor of the incident
particle

Wmax maximum energy transfer in a binary collision (see Problem 1.26 for its
derivation)

I mean excitation potential of the material, given by the approximate formula
I ≈ 16 · Z0.9 eV.

δ, C density and shell corrections factors, see Problem 2.2. For their parametri-
sation, the reader is addressed to more advanced textbooks on the topic.

The units of d E/dx deserve a few more words. It is quite common to express the
energy loss as a mass stopping power, i.e. in units of MeV g−1 cm2 rather than
in MeV cm−1. This is motivated by the fact that the energy loss by collision is
proportional to the density of scattering centers, i.e. Z NA ρ/A. Since Z/A is quite
uniform across different materials, the energy loss per unit of surphace density is
less dependent on the medium.

As shown by Eq. (2.1), for a fixed medium the energy loss by collision depends
only on the particle velocity β and on its charge z. The functional form features a
fast rise as β approaches 0 due to the β−2 factor, it approaches a global minimum at
around β ≈ 0.94 ÷ 0.97, or γ between about 3 and 4, and then rises logarithmically
with γ . Particle sitting on the minimum and on the plateau of their d E/dx curve are
characterised by a rather uniform and close-to-minal energy loss, and for this reason
they are said to be minimum ionising particles (MIP). Using the approximation
me/M � 1 in Eq. (1.141) for the maximum energy transfer, and neglecting both
shell and density corrections, which are however relevant for large γ , we can arrive
an approximate formula:

−d E

dx
≈ (

0.307 MeV mol−1 cm2
)

ρ
Z

A

z2

β2

[
ln

2 me c2 γ 2 β2

I
− β2

]
. (2.2)

Considering that for most of the elements and their compounds Z/A ≈ 0.5 g−1 mol,
and given that the term within square brackets is slowly varying with γ between 10
and 15, when dealing with particles of sufficiently large initial energy, one can often
use an average value:

−d E

dx
≈ 1.5 ÷ 2.0

(
ρ

g cm−3

)
z2

β2
MeV/cm. (2.3)

Figure 2.1 shows the function at the right-hand side of Eq. (2.2) for Z/A =
0.5 g−1 mol and for two extreme values of the ionisation potential I . The num-

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Fig. 2.1 The approximate Bethe formula of Eq. (2.2) as a function of the γ factor of the incident
particle and for two extreme values of the mean excitation potential I . The global minimum at
around γ = 3 ÷ 4 and the logarithmic growth are evident from the curves. For values of γ above
the argmin of the function, the mass stopping power is in the ballpark of 2 MeV g−1 cm2

ber of electrons extracted from their orbitals per unit length by the interaction with
a MIP can be crudely estimated from Eq. (2.3) to be

d Ne

dx
≈ 1

I

d E

dx
. (2.4)

For example, for a typical ionisation potential I = 20 eV and a water-like mass
density, a unit-charge MIP produces about 105 electrons/cm.

For electrons and positrons moving inside matter, a formula similar to Eq. (2.1)
holds. A few modifications have to be introduced, however, to account for the smaller
mass and for the identity of the incident electron with the electrons that it ionizes, see
e.g. Sect. 2.4 of Ref. [1] or Sect. 33.4 of Ref. [2]. In particular, one needs to replace
Wmax by me c2(γ − 2)/2 and 2 me c2 by me c2 in the argument of the logarithm, and
add a number of extra β-dependent terms inside the square brackets of Eq. (2.1),
giving:

−d E

dx
=

(
0.307 MeV mol−1 cm2

)
2

ρ
Z

A

z2

β2 ×

×
[

ln
me c2 γ 2 β2 (me c2(γ − 1))

2 I 2 + 1

γ 2 − 2γ − 1

γ 2 ln 2 + 1

8

(
γ − 1

γ

)2

− δ(β)

]
(2.5)

Numerically, it turns out that the stopping power for heavy ions and electrons and
positrons with the same velocity β are rather similar, indeed they are consistent with
each other to within about 15% up to γ factors of about 100, after which energy loss
by radiation prevails anyway. The relative difference between Eqs. (2.1) and (2.8)
for a few illustrative values of γ is reported in Table 2.1.
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Table 2.1 Relative difference between the energy loss by collision d E/dx for ions and electrons
at the same velocity and for a value of the mean excitation potential I = 20 (800) eV. The density
correction δ is neglected

γ β
d Eion/dx−d Ee/dx

d Eion/dx

1.01 0.140 11.3% (17.1%)

1.1 0.417 10.7% (16.3%)

2 0.866 8.48% (12.5%)

4 0.968 8.10% (11.4%)

10 0.995 9.06% (12.2%)

100 0.999 12.3% (17.5%)

The ionisation charge and the residual atomic excitation produced by the passage
of a charged particle can be detected through various methods and thus yield a mea-
surement of the particle position or energy. For example, this is the working principle
of gaseous detectors like proportional chambers, drift and streamer tubes, RPC, liq-
uid noble-gas detectors, etc. Semiconductor materials are also largely employed in
experiments. When a charged particle moves inside a semiconductor, a number of
electron-hole pairs are produced by the electrons being excited from the valence to
the conductive band. One strength of these materials relies on their small band gap
energy, a few eV infact, yielding a large number of signal carriers. Through appro-
priate doping and polarisation of the semiconductor, these electron-hole pairs can
drift across the medium without significant recombination, to be finally collected for
signal generation.

Other materials have the property of converting a fraction of the energy lost by
a moving charged particle in the form of molecular or electronic excitation of long-
lived states, that subsequently decay by emitting photons of characteristic wavelength
(fluorescence). Because of such property, these materials are called scintillators, and
the emitted radiation is called scintillation light. A key property of the scintillation
mechanism is that the medium is transparent to its own light over distances large
enough that the photons can be efficiently collected. The total light output per unit
length is approximately proportional to the stopping power, a property which can also
allow one to measure the total particle energy for fully absorbed particles. Scintillators
can be classified into two families: organic, for which the scintillation mechanism
relies on the fluorescence of organic molecules (e.g. plastic, organic crystals), and
inorganic, for which the fluorescence originates from the band structure of the crystal
(possibly activated by the introduction of suitable inpurities), or from electron-ion or
ion-ion recombination. A broader overview on the field can be found in e.g. Chap. 7
of Ref. [1].

Table 2.2 shows the mean energy loss necessary to produce one signal carrier,
which can be either a ion-electron pair, an electron-hole pair, or a scintillation photon,
depending on the excitation mechanism. As shown in the table, the largest signal
yields are provided by semiconductors, followed by the best scintillators and by
ionisation in noble gases. Some of the most popular scintillators materials in HEP
are actually characterised by relatively low light yield.
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Table 2.2 Mean energy loss necessary to produce one signal carrier, listed in increasing order. For
scintillators, the mean energy is defined as the inverse of the light yield (LY) in [γ /MeV], a quantity
that is commonly used to quantify the brightness of the scintillator. The values are taken from
Ref. [1, 2] and, since they usually depend on the ambiental conditions, they should be considered
more as an order-of-magnitude estimate. For more precise values, the reader is addressed to the
technical literature

Material Excitation Mean excitation energy ε [eV]
Ge (77 K) Electron-hole 3.0

Si Electron-hole 3.6

Cs I (Tl) Scintill. γ 12

Na I (Tl) Scintill. γ 22

Xe Electron-ion 22

Isobutane Ionisation 23

Ar Electron-ion 26

CO2 Ionisation 33

LISO (Ce) Scintill. γ 35

He Electron-ion 41

Plastic Scintill. γ 100

BGO Scintill. γ 300

PbWO Scintill. γ 5000

Multiple Scattering

Multiple scattering (MS) through small angles refers to the ensemble of incoher-
ent elastic collisions against the nuclear fields that charged particles undergo when
crossing a piece of material. Their collective effect it to randomise the direction of
the incoming particle with no significant energy loss. More informations on the sub-
ject can be found in Ref. [2]. The probability of multiple scattering through small
angles is large because of the sin−4 θ/2 dependence of the Rutherford cross section
(see Problem 1.58). However, there is also some finite probability that the scattering
occurs at large angles, with subsequent emission of a knocked-out electron, or δ-ray
(see Problem 1.62 for how to estimate such a probability). The quantity that char-
acterises multiple scattering through small angles is the mean square angle per unit
length Θ2

s , which in the standard theory is given by:

Θ2
s =

(
Es

βc|p|
)2 1

X0
, with Es =

√
4π

α
me c2 = 21 MeV. (2.6)

Notice that the quantity Es is the same that enters the definition of the Molier radius
for the lateral width of an electromagnetic shower, see Problem 2.34. The effect
of MS inside a medium of length L and radiation length X0 is to randomise the
position and direction of a charged particle at the exit of the medium. Considering
their projections onto a plane, the displacement y and angle θy are described by the
joint p.d.f:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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p(y, θy | L) = 2
√

3

π

1

Θ2
s L2

exp

[
− 4

Θ2
s

(
θ2

y − 3 y θy

L
+ 3 y2

L2

)]
(2.7)

From Eq. (2.7), one can easily compute the standard deviation of θy and y, and their
correlation:

√
〈θ2

y 〉 = z

√
Θ2

s L

2
= z

14.8 MeV

βc|p|

√
L

X0
(2.8)

√
〈y2〉 =

√
〈θ2

y 〉
L√
3

= z
8.54 MeV

βc|p|

√
L

X0
L

〈y θy〉√
〈θ2

y 〉〈y2〉
=

√
3

2
. (2.9)

A more accurate treatment of MS modifies the first of Eq. (2.8) to the well-known
formula:

√
〈θ2

y 〉 = z
0.0136 GeV

βc|p|

√
L

X0

[
1 + 0.038 ln

(
L

X0

)]
, (2.10)

See Ref. [2] for further informations.

Energy Loss by Bremstrahlung

For energies above a material-dependent threshold known as critical energy (Ec),
energy loss by radiation in the electromagnetic field of the atoms (bremsstrahlung)
prevails. An approximate parametrisation for the critical energy for electrons and
positrons is provided by the formula

Ec = 800 MeV

(Z + 1.2)
. (2.11)

In the bremsstrahlung-dominated regime, the energy loss per unit length is approxi-
mately proportional to the energy itself:

− d E

dx
= E

X0
, (2.12)

where X0, called radiation length, is approximately independent of E . In units of
mass per unit area, the radiation length is provided by the approximate expression:

X0 = (me c2)2 A

4 Z (Z + 1) NA α3(� c)2
[
ln(183Z−1/3) − f (Z)

]

≈ 716 A g cm−2

Z(Z + 1) ln(287
√

Z)
≈ 180

A

Z2
g cm−2, (2.13)
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Table 2.3 Radiation lengths for some materials that can be commonly found in particle physics
experiments, listed by decreasing order or X0 [cm]. From Ref. [1]

Material X0 [g/cm2] X0 [cm]
Air 36 300 × 102

Scintill. 44 42

H2O 36 36

Si 21.9 9.4

NaI 9.5 2.6

Fe 13.8 1.8

BGO 8.0 1.1

Pb 6.4 0.56

where A is the mass number in units of g mol−1. More informations on f (Z) can be
found in dedicated textbook, see e.g. Ref. [1]. Notice that both the nucleus and the
atomic electrons contribute to this O(α3) process: the former through a charge Z e
(hence the term ∼Z2), the latter through Z incoherent scatterings of strength e (hence
the term∼Z ). The last of Eq. (2.13) is a further approximation that helps remembering
the order-of-magnitude of X0 and its dependence on the atomic and mass number.
The radiation length for a few representative materials commonly found in particle
physics experiments are reported in Table 2.3. The energy loss by radiation is the
dominant mechanism of energy degradation for ultra-relativistic charged particles.
Notice that the radiation length X0 is proportional to the mass squared of the charged
ion (me in Eq. (2.13)). The next-to-lightest charged particle is the muon with a mass
nearly 200 times larger than me. The threshold at which energy loss by radiation
starts to be comparable to energy loss by collision is therefore much higher.

Energy Loss by Coherent Radiation: Cherenkov and Transition Radiation

If β > 1/n(ω), n(ω) being the refraction index of the medium at the frequency ω, the
particle emits energy in the form of Cherenkov radiation of wavelength λ = 2π c/ω.
The energy loss per unit length is given by:

− d E

dx
= z2 α �

c

∫
dω ω sin2 θc(ω), (2.14)

where θc is the angle of the shock-wave direction with respect to the particle direction,
which satisfies the relation:

cos θc = 1

β n
. (2.15)

Although the Cherenkov spectrum is continuous, photodetectors have a limited range
of sensitivity which depends of the quantum efficiency of the photocathode. In order
to estimate the number of photons to which the detector will be sensitive, we can
integrate Eq. (2.13) over the relevant spectrum to yield:
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d Nγ

dx dλ
= 2π α z2

λ2
sin2 θc(λ) ⇒ d Nγ

dx
≈ 2παz2 〈sin2 θc〉 λ2 − λ1

λ1λ2
(2.16)

Nγ

L
≈ 1.15 × 103

(λ̂/400 nm)
z2 〈sin2 θc〉 Δλ

λ̂
,

(2.17)

where λ̂ = √
λ1λ2 and the mean value of sin2 θc is used, which is appropriate if n

is slowing varying. For example, with a photodetector sensitive in the range 300 to
500 nm, this gives Nγ � 500 photons/cm for a particle with z = 1, to be compared
with the about 105 electrons/cm electrons released by a MIP from collision loss, see
Eq. (2.7). When coupled to a photodetector, the geometric and quantum efficiency
of the photocathode further reduce the photo-electrons (p.e.) output. Equation 2.16
for z = 1 can be written as:

Np.e. = L N0 〈sin2 θc〉 (2.18)

where N0 is the so-called Cherenkov detector quality factor, which is of order
100 cm−1 for realistic photodetectors sensitive in the visible-UV range: practical
counters in experiments feature values of the quality factor ranging between 30 and
180 cm−1 [2].

Detectors based on the detection of Cherenkov radiation can be used for measuring
the total energy of the crossing particle as well as for particle identification. In the first
case, one exploits the proportionality between the collected light yield and the range
of the particle, which is approximately proportional to the initial particle energy,
see Problem 2.3. For the second purpose, one should distinguish between threshold
detectors, which trigger the passage of a particle with velocity above the Cherenkov
threshold, and imaging detectors, which are instead designed to exploit the angle of
emission of individual Cherenkov photons. For highly energetic particles with β ≈ 1,
the employment of threshold Cherenkov detectors for particle identification becomes
problematic since the index of refraction needs to approach one. To this purpose,
radiators with very low density, like He, C O2, or silica aerogel, are commonly used.
Indeed, the refraction index for a homogeneous medium depends on the density
according to the relation:

n = 1 + 2π f (0,k)

|k|2 N , (2.19)

where N is the density of scattering centres, f (0,k) is the forward scattering ampli-
tude and k is the wave-number vector. For example, a simple model based on a
collection of damped electronic oscillators with resonant frequency ωk and damping
constant νk would give [3]:

n(ω) = 1 + 2π re c2 N
∑

k

fk

ω2
k − ω2 − iνkω

. (2.20)
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Table 2.4 Refraction index and γ threshold for various radiators commonly used in Cherenkov
detectors. The values refer to wavelengths in the visible domain

Material n − 1 γ

He (NTP) 3.3 × 10−5 123

Air (NTP) 2.7 × 10−4 43

CO2 (NTP) 4.3 × 10−4 34

C5 H12 (NTP) 1.7 × 10−3 17.2

Silica aerogel 0.007 ÷ 0.13 2.1 ÷ 8.5

H2O 0.33 1.52

Glass 0.46 ÷ 0.75 1.22 ÷ 1.37

See Tables 2.4 and 6.1 of Ref. [2] for the index of refraction of some popular radiators.
In the β → 1 regime, though, the light output becomes small as for Eq. (2.16). For
example, if a threshold Cherenkov is used for particle identification in a beam of fixed
momentum p, the refraction index can be set to the inverse velocity of the slowest
particle, say β2, and then:

〈sin2 θc〉 = 1 − β2
2

β2
1

= 1 − m2
1/|p|2 − 1 + m2

2/|p|2
β2

1

= m2
2 − m2

1

|p|2 + m2
1

, (2.21)

which decreases like the square of the beam momentum.
When a relativistic charged particle crosses the boundary between vacuum and a

medium, a coherent radiation is emitted in the forward region θ ∼ 1/γ . The total
energy radiated depends linearly on the γ factor of the particle according to the
formula:

I = α z2 γ
� ωp

3
=

(
0.07 z2

√
ρ

g cm−3

Z

A
eV

)
γ, (2.22)

where ωp = √
4π ne/m e is the plasma frequency of the medium [3]. Although

the energy emitted per each crossing is rather small, the total yield for particles
with large γ , like GeV-electrons can be enhanced by interleaving several layers of
medium, as it is usually done in the so-called transition radiation detectors (TRD).
The latter find applications as tracking devices with built-in particle-identification
capability. In terms of emitted photons, the spectrum is concentrated in the region
0.1 γ < ω/ωp < γ , so that more energetic particles give rise to a harder spectrum.
More informations on the subject can be found in Ref. [2].

Interaction of Photons with Matter

Photons interact with matter by three mechanisms: photoelectric effect, Rayleigh
and Compton scattering, and pair-production. Depending on the material and on the
photon energy, one mechanism at the time usually dominates over the others. The
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photoelectric effect consists in the absorption of the photon by an atom, with the
subsequent expulsion of an electron of energy

Ee = hν − Be, (2.23)

where hν is the photon energy and Be is the electron binding energy. Conversely,
photon scattering against the atomic electrons does not destroy the photon, but mod-
ifies its energy and direction, see e.g. Problem 1.25. The scattering can either leave
the atom in the ground state (coherent, or Rayleigh scattering) or kick-out the elec-
tron (incoherent, or Compton scattering), thus leaving the atom in an excited state.
Pair-production is the conversion of a photon into e+e− in the electromagnetic field
of the atom, see e.g. Problem 1.48 for the kinematics of this reaction.

At low energy, photoelectric effect prevails. As the atomic electrons are bound
in discrete states, the photoelectric cross section as a function of the photon energy
features a number of thresholds corresponding to the opening of new atomic level. For
energies above the innermost level, the so-called K -shell, the cross section steeply
falls with energy like ∼E7/2. The K -shell threshold for high-Z elements can be
crudely estimated by using the energy levels formula for the hydrogen atom:

E(n) = − 1

2 n2
α2 Z2 me c2. (2.24)

From this approximations, one expects EK ≈ 10 keV for metals like iron (measured
value 7.1 keV), and EK ≈ 100 keV for lead (measured value 88 keV). At lower
energies, the L and M atomic levels give rise to as many new thresholds. Depending
on the photon energy, the cross section changes with the atomic number of the
medium. For MeV photons, it is roughly proportional to Zβ , with β = 4 ÷ 5. The
cross section at the K -threshold is of the order of 103 barn in lead and about 106 barn
in iron. See Ref. [9] for a compendium of measured values.

Above the K -threshold, the photoelectric and Compton scattering cross sections
become of comparable size. The latter changes mildly with energy for photon energies
up to the pair-production threshold, after which pair-production becomes dominant.
For k ≡ E/me � 2, the total cross sections is approximately given by the Klein–
Nishina formula for Z incoherent scattering centers [9]:

σComp = Z σKN ≈ Z

(
8π

3
r2

e

)
1 + 2 k + 1.2 k2

(1 + 2 k)2
(2.25)

with 8π/3r2
e = 0.665 barn. The low-energy limit of Eq. (2.25) gives the Thomas

cross section for Z free electrons, while the k-dependent term reduces the cross
section for increasing photon energies. In the Compton scattering, a fraction of the
photon energy is transferred to the outgoing electron. The differential cross section
in the recoil energy of th electron T can be obtained from the Klein–Nishina formula,
giving

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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dσComp

dT
= 3 σTh

8 me c2 k2

[
2 +

(
T
E

)2

k2
(
1 − T

E

)2 +
T
E

1 − T
E

(
T

E
− 2

k

)]
(2.26)

with 0 ≤ T ≤ 2 k

1 − 2 k
E,

see also Problem 1.25. Due to the second term within square brackets in Eq. (2.26),
the differential cross section rises steeply with T up to the kinetic bound, giving rise
to a characteristic peak in the electron spectrum known as Compton peak.

When the photon energy exceeds the e+e− threshold, pair-production in the
nuclear and electronic fields dominates. For energies below about 10 MeV, the inter-
action cross section varies logarithmically with the photon energy, and then becomes
almost independent of energy. Using Tsai’s formula [4], we get

dσpair

dx
= A

X0 NA

[
1 − 4

3
x (1 − x)

]
⇒ σpair = 7

9

A

X0 NA
≈ 7.2 Z2 mbarn,

(2.27)

where x is the photon energy fraction transferred to the electron/positron, and we
have used the last formula in Eq. (2.13) to approximate X0. Notice that the appearance
of macroscopic properties of the medium in the cross section, like the mass number
and the Avogadro number, are fictitious, since they exactly cancel the same quantities
inside X0. The latter is conveniently introduced to show that the interaction length
for e+e− production is indeed related to the radiation length by λpair = (9/7) X0.
See Ref. [2] for more details.

Neutrons

The interaction between neutrons and matter depends strongly on the neutron energy.
For energies in excess of about 100 MeV, neutrons initiate a hadronic cascade, with
the production of primary hadrons (e.g. pions) sharing a fair fraction of the initial
neutron energy. Fast neutrons, i.e. from a few hundreds of keV to a few tens of MeV,
slowly thermalise by elastic scattering in high-Z materials, or faster in hydrogenised
materials, see Problem 1.24. Inelastic scattering, like A(n, n′)B, A(n, 2n′)B, can
also occur in the presence of nuclear resonances. Epithermal neutrons, i.e. from
about 0.1 eV to about 100 keV, and thermal neutrons, i.e. around 25 meV, undergo
preferentially nuclear reactions, like radiative neutron capture A(n, γ )B, nuclear
spallation A(n, p)B, A(n, α)B, and nuclear fission.

Problems

Bando n. 13153/2009

Problem 2.1 Give a qualitative description of how the energy loss by ionisation of
a charged particle of mass m depends on the particle momentum.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Solution

The energy loss by ionisation d E/dx of a particle of mass m and charge z e is
described by the Bethe formula of Eq. (2.1). To good approximation, it is a function
of the particle velocity and charge only, namely:

−d E

dx
= z2 f (β) = z2 f ′ (|p|) (2.28)

see also Problem 2.4. At a given value of m, the function f ′(|p|) features the following
qualitative behaviour:

f ′(|p|) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a |p|−2 ln |p| |p| � (m/me) I

b |p|−2 + c |p| � m

c |p| ≈ 3m ÷ 4m

c + d ln |p| |p|  m

(2.29)

In words: it first decreases as |p|−2 ln |p| at small momenta, until the momentum
reaches a few times the mass value. At this point, it plateaus and increases only
logarithmically with |p|, see Fig. 2.2.

Bando n. 5N/R3/TEC/2005

Problem 2.2 Motivate the presence of the density and shell correction terms to the
Bethe formula.

Discussion

The Bethe formula describes the energy loss of a charged particle due to the elastic
collisions with the atomic electrons. In this respect, it assumes that the electrons
are at rest compared to the moving particle, which is nearly unaffected by each

Fig. 2.2 The Bethe formula
d E/dx in arbitrary units
(a.u.) as a function of |p|,
compared to its piecewise
approximation in four
momentum ranges
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individual binary collision. A non-relativistic version of the Bethe-Bloch equation
can be indeed obtained by considering the total momentum transfer that an infinitely
massive moving charge has on a free electron initially at rest and located at an
impact parameter b with respect to the direction of flight. The net effect is obtained
by considering an ensemble of such electrons up to a maximum value of b such that
the momentum transfer is above the mean ionisation energy necessary to strip the
electron from its orbital. See e.g. Sect. 2.2 of Ref. [1].

Solution

The Bethe formula turns out to be accurate in the high- and low-velocity regimes only
if the density δ and shell C corrections are added, as shown in Eq. (2.1). The former
accounts for the polarisation of the medium by the electric field of the incident
particle, which decreases the effective volume available for electron collision. As
such, it tends to reduce the energy loss, and is more relevant at high-energy, see e.g.
Ref. [2] for a parametrisation of δ. Conversely, if the particle velocity is comparable
with the electron velocity, which is of order α, then the assumption that the electrons
are at rest breaks down and a correction C(I, β) has to be included.

Suggested Readings

The reader is addressed to Sect. 2.2 of Ref. [1] and Chap. 33 of Ref. [2] for further
details on this topic.

Problem 2.3 Derive an approximate expression for the range R of a charged particle
of mass m and initial energy E that loses energy by collision with the atomic electrons.
How does R depends on the initial kinetic energy in the ultra-relativistic limit E  m
and in the classical limit?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1). The range
of a particle is the average distance it travels before losing all of its kinetic energy
and thus come to a stop. In the continuous slowing-down approximation (CSDA), it
can be obtained by integrating the inverse linear stopping power over the full range
of kinetic energy, i.e.:

R(E) =
∫ m

E
d E

1

d E/dx
. (2.30)

The analytical integration of the Bethe formula is an hard task to due to the logarithmic
term. However, as we have seen in the introduction Sect. 2.1, for sufficiently large
initial energy, one can neglect the dependence of this term on the velocity β and use
an approximate version of the type:

d E

dx
= −C z2

β2
, (2.31)
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with C ≈ 1.7 MeV
[
ρ/(g cm−3)

]
cm−1, see Eq. (2.3). Using Eq. (2.31) in place of

the full Bethe formula, the range is given by:

R(E) =
∫ E

m
d E

β2

Cz2
= 1

Cz2

∫ E

m
d E

(
1 − m2

E2

)
=

= 1

C z2

[
(E − m) + m2

(
1

E
− 1

m

)]
= 1

C z2

(E − m)2

E
= m

C z2

(γ − 1)2

γ
.

(2.32)

Hence, we find that R/m is a function of γ = E/m:

R

m
= 1

C z2

(γ − 1)2

γ
= 1

C z2

(√
1 + (βγ )2 − 1

)2

√
1 + (βγ )2

. (2.33)

The second of Eq. (2.33) can be directly compared to Fig. 2.3, which shows the range
of a heavy ion in different materials as obtained from a full integration of Eq. (2.1),
as a function of βγ (from Ref. [2]). A good numerical agreement is found with the
approximate formula of Eq. (2.33) up to βγ � 1. For smaller values of β, Eq. (2.33)
underestimates the true range by a fair amount. This is a consequence of having
neglected the logarithmic term in the stopping power.

Fig. 2.3 Range of heavy
charged particles in liquid
(bubble chamber) hydrogen,
helium gas, carbon, iron, and
lead. From Ref. [2]
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According to Eq. (2.32), the range for an ultra-relativistic particle is proportional
to its energy:

Rγ1 ≈ m γ

C z2
= E

C z2
. (2.34)

This result comes out intuitive if one considers that a particle with γ  1 moves at
the speed of light; the energy loss is approximately constant until the velocity drops
below c. At this point, the stopping power steepens due to the β−2 dependence and
the residual energy gets degraded in a short path, so that R ∼ E/(d E/dx |MIP) ∼ E .
For a non-relativistic particle, the range is instead a quadratic function of the kinetic
energy T :

RNR ≈ (E − m)2

C z2 m
= T 2

C z2 m
. (2.35)

However, one should remember that for β � 0.5, the approximation of Eq. (2.31) is
not valid anymore and the resulting range is underestimated. For example, for an α

particle emitted in the decay of 210Po with T = 5.3 MeV, the range in air predicted
by Eq. (2.35) is about 5.32/(2 ·10−3 ·22 ·4×103) ≈ 1 cm, whereas the CSDA range
from a full integration of the Bethe function gives about 5 cm [5].

Suggested Readings

A good starting point to learn more about the concept of range is Chap. 2 of Ref. [1].

Problem 2.4 Determine the relation between the stopping power d E/dx for two
particles of masses m1 and m2, electric charges z1 e and z2 e, and same momentum
|p|, moving through the same medium. What is the relation between the range R1

and R2 of the two particles under the same conditions?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1), which, as a
function of the particle momentum, can be written as:

d Ei

dx
(|p|) = z2

i f

( |p|
mi

)
, (2.36)

so that:

d E2

dx
(|p|) = z2

2 f

( |p|
m2

)
= z2

2

z2
1

z2
1 f

(
m1

m2

|p|
m1

)

= z2
2

z2
1

d E1

dx

(
m1

m2
|p|

)
. (2.37)
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Owing to such scaling law, the stopping power d E(|p|)/dx as a function of |p| for
different particle types are all related by a uniform scaling of the orizontal axis equal
the mass ratio, and by a scaling on the vertical axis by the ratio of the squared charges.

Let’s now consider the range as defined in Problem 2.3. For a given kinetic
energy T , the range is given by:

Ri (T ) =
∫ 0

T
d E

1

d Ei/dx
=

∫ 0

T
d E

1

z2
i f

(
E
mi

) , (2.38)

so that:

R2(T ) =
∫ 0

T
d E

1

z2
2 f

(
E

m2

) = z2
1

z2
2

∫ 0

T
d E

1

z2
1 f

(
m1
m2

E
m1

) = z2
1

z2
2

m2

m1

∫ 0

m1
m2

T
d E ′ 1

z2
1 f

(
E ′
m1

)

= z2
1

z2
2

m2

m1
R1

(
m1

m2
T

)
. (2.39)

Discussion

The simultaneous measurement of the stopping power d E/dx and of the particle
momentum, or of its kinetic energy, or of its velocity, provides a tool to identify the
particle type thanks to the scaling law of Eq. (2.37). The canonical example of a
detector that allows for a simultaneous measurement of these quantities is the time
projection chamber (TPC).

Suggested Readings

For an overview on the TPC, the reader is encouraged to consult the PDG review
on detectors for accelerators [2]. See also Ref. [1] for the scaling law of stopping
powers and ranges.

Problem 2.5 The range R of a particle is the distance over which the particle loses
all of its kinetic energy. For a heavy ion, the energy loss per unit length of traversed
material can be approximated by the formula

d E

dx
= −C z2

β2
, (2.40)

where C ≈ 1.7 MeV cm−1, z is the ion charge in units of e, and β is the particle
velocity.

• What kind of interaction between the ion and the material is responsible for this
energy loss?

• Explain how the mass of a charged particle can be determined from the simulta-
neous measurement of d E/dx and of the momentum |p|.
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• Estimate the range R in water of a proton with T = 60 MeV.

Solution

As discussed in Sect. 2.1, heavy ions moving in matter lose energy due to elastic
collision with the atomic electrons.

Since d E/dx ∼ z2 f (β) and |p| = mβγ , the simultaneous measurement of the
two quantities allows to measure m for different ansatz on z. A comparison of the
mass values thus obtained with the spectrum of known particles allows one to identify
the particle type.

In order to estimate the range of a proton in water, we can use Eq. (2.35) obtained
from the limit γ → 1 in Eq. (2.32). We can obtain the same result starting from
Eq. (2.40) and using the fact that T = |p|2/2m for a classical particle:

R(T ) =
∫ 0

T
d E

1

d E/dx
=

∫ T

0
d E

β2

z2 C
=

∫ T

0
dT ′ 2 T ′

m p c2 z2 C
= 1

m p c2

T 2

z2 C
=

= (60)2 MeV2

103 MeV · 12 · 1.7 MeV cm−1
= 2.1 cm, (2.41)

to be compared with a CSDA value of 3.1 cm from a full integration of the Bethe
formula [5].

Bando n. 13153/2009

Problem 2.6 Discuss the characteristics of the Bragg peak and its main applications.

Solution

The energy loss of a charged ion in matter is described by the Bethe formula (2.1). Due
to the dominant 1/β2 behaviour at velocities below about 0.9, the energy deposition
per unit length becomes increasingly more intense as the particle velocity decreases.
By tuning the initial particle energy T to attain a certain range R, the Bethe formula
predicts that most of T will be infact dissipated near the end of the trajectory.

Since E = E(β), the Bethe formula can be solved as an ordinary differential
equation (ODE) in β, giving a solution d E(x)/dx . The latter features a peak at
x ≈ R, the so-called Bragg peak. Indeed, by using the approximation (2.3) and
assuming the ion to be non-relativistic, the ODE can be easily solved analytically,
yielding:

d

dx

(
1

2
m β2

)
= − z2 C

β2
, m β

dβ

dx
= − z2 C

β2
, β3 dβ = − z2 C

m
dx,

β4 − β4
0 = −4 z2 C

m
x, β2(x) = β2

0

√
1 − 4 z2 C

m β4
0

x = β2
0

√
1 − x

R
, (2.42)
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Fig. 2.4 Sketch of a typical
Bragg curve for protons or
heavy ions moving in a
dense medium

x

−d
E

/d
x

where we have used Eq. (2.35) to define the range R of the particle. From Eq. (2.42)
we therefore get:

d E

dx
(x) = − z2 C

β2
0

1√
1 − x/R

. (2.43)

The energy ΔE deposited in the interval [λR, R] can be easily computed from
Eq. (2.43) to give:

ΔE(λ) =
∫ R

λR
dx

∣∣∣∣d E

dx

∣∣∣∣ = T
√

1 − λ. (2.44)

The value of λ such that a fraction α of the initial energy is lost in the interval [λR, R]
is therefore given by λ = 1 − α2. For example, 50% of the kinetic energy T is lost
in the last quarter of the particle path, and 25% in the trailing 6% of the path. A
caveat: Eq. (2.43) has been obtained under the assumption that d E/dx ∼ β−2. This
is a poor approximation for βγ � 1, and the resulting stopping power gets largely
overestimated. Furthermore, when βγ � 0.1, the shell corrections are relevant,
reducing significantly the stopping power, and the Bethe formula ultimately breaks
down. Overall, the Bragg curve is much less peaked than predicted by Eq. (2.43),
and infact the maximum occurs before the full range is attained, see Fig. 2.4.

The Bragg peak finds one major application in medical physics as a tool for curing
solid tumors: the intense energy deposition in the neighbourhood of the beam range
allows to burn selected tissue depths with reduced damage to the upstream tissue.

Bando n. 13705/2010

Problem 2.7 A 2 cm-thick plastic scintillator is coupled to a photomultiplier with
gain G = 106 and detection threshold Qth = 1 pC, such that all the scintillation
light can be assumed to be detected. A beam of particles of energy 10 GeV impinges
perpendicularly to the scintillator:
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• Estimate the charge collected at the anode, if the beam is made of muons.
• If the beam is made of neutrons, estimate the minimum scattering angle on protons

such that the neutron can be detected.

Discussion

Scintillators have been briefly discussed in Sect. 2.1. A scintillator is always coupled
with a photomultiplier that transforms the scintillating photons in photoelectrons
(p.e.). Because of the geometry of the medium and of the QM-nature of the photo-
electric effect, a photomultiplier is only sensitive to a fraction εC of the total light
output, of which only a fraction εQ is actually converted into p.e. By themselves,
such p.e. do not usually represent an amount of charge large enough to generate a
significant signal, i.e. above the electronic noise. For this reason, the primary p.e.
undergo a multiplicative enhancement between the photocathode and the anode. This
can be for example achieved by accelerating them with intense electric fields, so that
they can initiate a chain reaction that brings to the fan exponential charge multi-
plication. The enhancement factor, i.e. the total output charge per initial p.e., is the
called gain (G) of the photomultiplier. The enhanced charge is finally read-out at
the anode by a chain of amplifiers which transforms it into voltage or currents. A
key point in all this procedure is that the proportionality between the initial number
of p.e. and the final signal amplitude is preserved. After coupling the amplification
stage to the read-out electronics, characterised by an electronic noise Ne, the relative
energy resolution from a scintillator that produces nγ Poisson-distributed photons
for a particle of energy E , can be parametrised as [2]:

σ(E)

E
=

√
fN

nγ εQ εC
+

(
Ne

Q nγ εQ εC

)2

, (2.45)

where fN is the called excess noise factor and arised from the amplification process.
The role of the gain factor in reducing the signal uncertainty is made clear by
Eq. (2.45).

Solution

A 10 GeV muon loses energy mostly by collision with the atomic electrons as dis-
cussed in Sect. 2.1. In particular, it behaves as a MIP, and its mean energy loss per
unit length is provided by Eq. (2.3). For a plastic scintillator, the mass density is
approximately ρ ≈ 1 g cm−3. With this value, the energy loss is given by:

−d E

dx
≈ 2.0 MeV g−1 cm2 · 1 g cm−3 = 2 MeV cm−1. (2.46)

While crossing a thickness d = 2 cm, the total energy lost by the muon is ΔE =
|d E/dx | · d ≈ 4 MeV. The mean excitation energy for a plastic scintillator can be
found in Table 2.2. Assuming ε = 100 eV, εC = 1, and εQ = 1, we expect to collect
an average charge at the anode of about:
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Q = G · ΔE

ε
· e = 106 · 4 MeV

100 eV
· 1.6 × 10−19 C = 6.4 nC, (2.47)

i.e. more than three orders of magnitude larger than the threshold charge Qth.
If the beam is made of neutrons, their detection proceeds through the measurement

of the recoil energy of protons and other nuclei that interact with the beam particles.
The threshold energy such that a recoil proton gives rise to a detectable signal is
determined by the condition:

G · Tth

ε
· e = Qth, ⇒ Tth = 10−12 C · 102 eV

106 · 1.6 × 10−19 C
= 0.62 keV, (2.48)

which is small compared to the proton mass and to the beam momentum. It is easy
to show that for very small recoil energy, momentum has to be exchanged perpen-
dicularly. Indeed, if we indicated the four-momenta of the initial (final) neutron and
proton by p and k (p′ and k ′), and the angle that the recoiling proton forms with the
beam momentum as θp, then:

p′ = p + k − k ′,

m2
n = m2

n + 2m2
p − 2En m p − 2(En E ′

p − |pn||p′
p| cos θp) − 2E ′

p m p,

cos θp = E ′
p (En + m p) − m p (En + m p)

|pn||p′
p|

= Tp (En + m p)

|pn||p′
p|

≈

≈
√

Tp

2m p

[
En + m p

|pn|
]

, if |p′
p| � m p. (2.49)

Since T � m p for our case, and given that the factor within square brackets is of
order one, the resulting angle turns out to be pretty much π/2, and conservation of
momentum implies that the momentum received by the extra neutron is also is also a
vector perpendicular to the beam direction. Since Tth � En , the neutron momentum
magnitude after the scattering is almost unchanged, and the scattering angle of the
neutron is therefore given by:

θn ≈ |p′
p|

|pn| =
√

2m pTth

|pn| =
√

2 · 0.938 · 0.62 × 10−6

10
= 1.1 × 10−4 rad. (2.50)

Bando n. 1N/R3/SUB/2005

Problem 2.8 A MIP generates, on average, n electron-ion pairs per cm in a gaseous
detector at standard pressure. What is the typical value of n, if the gas consists in a
argon-isobuthan mixture 60%–40%? Which additional factors acting on the statistics
of the produced electrons determine the standard deviation of the signal?
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Solution

On average, a MIP releases an amount of energy per unit length described by Eq. (2.3).
If the gas is made of argon and isobutane, which have a small ionisation potential
I ≈ 12 eV, see e.g. Table 6.1 of Ref. [1] or Ref. [5], the Bethe formula predicts
an energy loss per mass surphace of about 2.5 MeV g−1 cm2, see also Fig. 2.1. The
density of the gas at STP conditions can be calculated from the law od ideal gases:

ρ = A

R T/P
= (0.6 · 18 + 0.4 · 58) g mol−1

8.314 J mol−1 K−1 · 298 K/105 Pa
= 34 g mol−1

2.5 × 104 cm3 mol−1 =
= 1.4 × 10−3 g cm−3. (2.51)

The mean excitation energy for the two molecules can be read from Table. 2.2. Taking
a weighted average of the two components, we get:

n = |d E/dx |
(0.6 · 26 + 0.4 · 23) eV

= 2.5 MeV g−1 cm2 · 1.4 × 10−3 g cm−3

24.8 eV
= 140 cm−1.

(2.52)

In a gaseous ionisation detector, the primary electrons need to be accelerated by
an intense electric fields until they trigger the formation of an avalanche. Indeed, an
amount of primary ionisation electrons like in Eq. (2.52) is not sufficient to produce a
detectable signal. Since the charge-multiplication process is intrinsically random, it
introduces an additional fluctuation in the number of signal carriers. If an electron-ion
pair recombines before the formation of the avalanche, or if it gets trapped by the gas
molecules to give rise to an ion, it gets lost for later multiplication. Suitable amounts
of electronegative gases, like freon, can limit this effect. The gain (see Problem 2.7),
and hence the final statistics of signal carriers, depends on the choice of the gas.
Noble gases are usually chosen because of their large gain factors. Another typical
problem with gaseous detectors is the formation of avalanches in random points of
the chamber created by energetic photons emitted by the accelerated electrons. This
undesired effect limits the operation rate and resolution of the detector. These effects
can be limited by adding appropriate amounts of organic quenchers, like isobutane.
Finally, one should remember that the resolution of a gaseous ionisation detector that
absorbs all of the particle kinetic energy scales better than 1/

√
n by the so-called

Fano factor, which for typical gases is in the range 0.05 ÷ 0.20, see e.g. Table 6.2 of
Ref. [7].

Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Refs. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. 5N/R3/TEC/2005
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Problem 2.9 How many electrons does a charged particle produce on average when
crossing 100 µm of silicon?

Solution

Let us assume that the charged particle have z = 1 and that they behave like a MIP.
The energy loss per unit length is given by the Bethe formula of Eq. (2.2). For a MIP,
the dependence of d E/dx on the particle energy is mainly through the logarithmic
term ∼ ln γ . Assuming the particle to be in the neighborhood of the global minimum,
i.e. γ ≈ 4, we can explicitly compute the right-hand side of Eq. (2.2) for a pure silicon
medium, giving:

−d E

dx
= (

0.307 MeV mol−1 cm2) · 2.33 g cm3 · 14

28.1 g mol−1

[
ln

2 · 0.511 MeV · 42

16 · 140.9 eV
− 1

]
=

= 3.7 MeV cm−1, (2.53)

which agrees well with the more accurate prediction of 3.9 MeV cm−1 [5]. The
number of electron-hole pairs produced by the passage of such a particle across a
thickness d = 100 µm of silicon is therefore given by:

neh = |d E/dx | · d

ε
= 3.7 MeV cm−1 · 10−2 cm

3.6 eV
≈ 104, (2.54)

where we have used the mean excitation energy for silicon as in Table 2.2.

Bando n. 1N/R3/SUB/2005

Problem 2.10 A relativistic electron loses energy by both ionisation and by radiation
when moving inside matter.

• How does the energy loss by ionisation and by radiation depend on the material?
• How do they depend on the electron energy?
• The critical energy is defined as the energy at which the two energy losses are

equal: which between a muon and an electron has the smallest critical energy?

Solution

The energy loss of relativistic electrons and positrons is discussed in Sect. 2.1. For
energies below the critical energy Ec, energy loss by collision with the atomic
electrons prevails. The material enters mostly through its electron density ne =
NA ρ Z/A and the average ionisation potential I . The stopping power is propor-
tional to ne and depends logarithmically on I . A residual dependence on the atomic
number Z comes from the shell and density effects, see e.g. Ref. [2]. For electrons
with energy in excess of a few MeV, the rate of energy loss by collision is almost
independent of the electron energy, while it goes like T −1 at smaller energies.
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Fig. 2.5 Electron and muon critical energy for the chemical elements. From Ref. [2]

Energy loss by radiation prevails above the critical energy. The material enters
through the atomic density n = NA ρ A and through the atomic number Z . In particu-
lar, it is proportional to the combination Z2ρ/A, as shown by Eq. (2.13). Furthermore,
it is proportional to the energy itself, see Eq. (2.12).

Since the energy loss by radiation is inversely proportional to m2, where m is the
mass of the incident particle, see Eq. (2.13), while the energy loss by ionisation is
independent of m for sufficiently high energies, it follows that the critical energy
must be approximately go as ∼m2, since it is roughly given by the position of
the intersection point between two curves in the (d E/dx, E) plane, one of which is
roughly constant (energy loss by collision), while the other (energy loss by radiation)
is a straight line of slope proportional to m−2. According to this picture, the critical
energy for muons, Eμc, is expected to be about 4×104 times larger than for electrons.
An exact scaling does not hold however, and the critical energy Eμc is a factor of
about 3 smaller than the naive scaling Eμc ≈ (mμ/me)

2 Ec, see e.g. Fig. 2.5 taken
from Ref. [2].

Bando n. 13153/2009

Problem 2.11 An electron moving in a material loses energy by a variety of mech-
anisms. Define the critical energy and explain how it depends on the atomic number
Z of the material.

Solution

Energy loss by collision and radiation are discussed in Sect. 2.1. The critical energy
Ec is defined as the energy at which the two rates of energy loss become identical.
An approximate formula for Ec is given by

Ec = 800 MeV

(Z + 1.2)
, (2.55)
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see e.g. Ref. [1, 2]. Hence, the critical energy decreases with Z . In particular, it goes
like Z−1 for Z  1. This can be understood by the following argument: the critical
energy is roughly given by the position of the intersection point between two curves
in the (d E/dx, E) plane, of which one is flat versus energy and goes like ∼Z (energy
loss by collision), while the other has a positive slope and goes approximately like
∼Z2 at large values of Z (energy loss by radiation), hence the intersection point
should scale as ∼Z−1.

Bando n. 5N/R3/TEC/2005

Problem 2.12 Provide an approximate formula for the radiation length X0 in terms
of the atomic and mass numbers of the material.

Solution

An approximate version of X0 has been derived in Eq. (2.13):

X0 ≈ 716 A

Z (Z + 1) ln(287
√

Z)
g cm−2, (2.56)

where A is the mass number in units of g mol−1 and Z is the atomic number. Hence,
the radiation length scales as ∼A Z−2, for sufficiently large values of Z .

Bando n. 18211/2016

Problem 2.13 How much energy does an electron with initial energy of 1 GeV lose
by crossing a material with thickness equal to one radiation length?

Solution

An energy of 1 GeV is above the critical energy Ec of Eq. (2.11), see Fig. 2.5, therefore
the electron loses energy mostly by radiation. The rate of energy loss per unit length
is therefore given by

d E

dx
= − E

X0
, (2.57)

where X0 is the radiation length measured. The electron energy as a function of the
traversed length is then obtained by integrating Eq. (2.57) to give:

E(x) = E0 e−x/X0 ⇒ E(X0) = E0

e
= 0.368 E0. (2.58)
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The energy lost in the medium is therefore ΔE = (1 − 1/e) E0 = 0.632 E0.

Bando n. 13153/2009

Problem 2.14 Determine the law by which a beam of electrons of intensity I0 gets
attenuated while crossing a layer of material of thickness d.

Solution

Electrons lose energy mostly by radiation at high energy, and then by elastic collison
with atomic electrons at lower energies. If the beam is monochromatic and the thick-
ness d exceeds the electron range in the material, the beam particles will traverse
the full thickness and emerge with an energy distribution centred around a smaller
value. Elastic scattering can instead deflect the electron from its original trajectory
and remove it from the beam. Let’s assume that the reaction which removes electrons
from the beam is characterised by a cross section σ and let’s denote the density of
scattering centres by n. By definition, the probability of interaction per unit length is
given by the interaction length of Eq. (1.291), namely λ = 1/(nσ). If the beam has
an intensity I (x) at a depth x , the intensity at a distance x + dx is given by:

I (x + dx) = I (x) − I (x)
dx

λ
,

d I

I
= −dx

λ
⇒ I (x) = I0 e−x/λ (2.59)

The intensity varies exponentially with the traversed length.

Bando n. 1N/R3/SUB/2005, Bando n. 13153/2009

Problem 2.15 In which energy interval does Compton scattering dominate in the
interaction of photons with matter? What kind of interaction prevails at lower and
higher energies? How does it depend on the absorber?

Solution

The interaction of photons with matter is discussed in Sect. 2.1. At low energy, the
photoelectric effect (photon absorption with electron emission) is the main interaction
mechanism. Compton scattering (incoherent photon-electron scattering) becomes
significant for energies above the K -threshold and below a few times 2 me, after which
pair-production dominates. The transition between the photoelectric and Compton-
dominated regime depends on the medium (see below). For carbon (lead), the two
become of similar size at energies of about 10 (500) KeV, see e.g. Ref. [2].

The absorber type enters mostly through the atomic number Z . The photoelectric
cross section for energies in the MeV region is goes as ∼Zβ with β = 4 ÷ 5. The
Compton cross section is instead proportional to the number of electrons per atomi,
hence it goes as ∼Z . The cross section for pair-production is inversely proportional
to the radiation length X0, hence it is roughly proportional to ∼Z2 for large atomic
numbers.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

Photon interaction in matter is discussed in a large number of textbooks. For a primer,
the reader is addressed to Sect. 2.7 of Ref. [1] and to the PDG review [2]. A large
amount of tabulated data can be found in Ref. [6, 9].

Bando n. 5N/R3/TEC/2005

Problem 2.16 How does the photoelectric cross section vary as a function of the
photon energy? How does it depend on the atomic number Z?

Solution

The interaction of photons with matter is discussed in Sect. 2.1. At low energy,
the photoelectric effect (photon absorption with electron emission) prevails. The
photoelectric cross section as a function of the photon energy features a number of
edges corresponding to the opening of new atomic levels. For energies above the
innermost level (K -shell), the cross section steeply falls with energy as ∼E−7/2 and
it grows with the atomic number as ∼Zβ with β = 4 ÷ 5.

Suggested Readings

See Problem 2.15 and references therein.

Bando n. 18211/2016

Problem 2.17 Determine which process dominates in the photon-matter interaction
for the following reactions:

1. 1 MeV photons on Al;
2. 100 keV photons on H2;
3. 100 keV photons on Fe;
4. 10 MeV photons on C;
5. 10 MeV photons on Pb;

Solution

To solve this exercise, we can refer to Fig. 2.6, taken from Ref. [2], to read the cross
section values for carbon and lead, and then use these values, together with the
known Z -dependence of the cross sections, in order to extrapolate to other materials.
To validate the extrapolation, we can use the values tabulated in Ref. [6].

1. A 1 MeV photon is just below the pair-production threshold. Aluminium has
atomic number Z = 13. The energy at which Compton and pair-production
become similar is about 500 keV in lead and about 10 keV in carbon. Aluminimum
must be in-between, therefore Compton scattering has to be by far dominant
at such an energy. Indeed, from Ref. [6] we find σComp ≈ 3 barn and σp.e. ≈
10−3 barn.
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Fig. 2.6 Photon total cross sections as a function of energy in carbon and lead, showing the
contributions of different processes. Taken from Ref. [2]

2. A 100 keV photon on hydrogen cannot undergo pair-production. Since Compton
scattering dominates the photon-matter interaction at this energy for carbon, it
will be a fortiori dominant in hydrogen, since the photoelectric cross section
decreases as a function of Z much faster compared to the Compton cross section.
Indeed, from Ref. [6] we find σComp ≈ 0.5 barn and σp.e. ≈ 10−6 barn.

3. A 100 keV photon on iron cannot undergo pair-production. From Fig. 33.15 of
Ref. [2], the photoelectric (Compton) cross section in lead at that energy is around
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103 barn (10 barn), so that, by assuming a ∼Z5 (∼Z ) scaling, we should expect
roughly the same cross sections. Indeed, from Ref. [6] we find σComp ≈ 12 barn
and σp.e. ≈ 20 barn.

4. A 10 MeV photon can undergo pair-production, but Compton scattering is sizable
at that energy. Referring to Fig. 33.15 of Ref. [2], one sees that Compton cross
section on carbon is larger than pair-production, although the two are still compa-
rable. Indeed from Ref. [6] we find σComp ≈ 0.3 barn and σpair ≈ 0.8×10−1 barn.

5. As before, one should expect the pair-production and Compton cross sections
to be of the same order. This time, it’s the former to be larger because of the
∼Z2 scaling compared to just a ∼Z scaling of Compton scattering. Indeed from
Ref. [6] we find σComp ≈ 4 barn and σpair ≈ 12 barn.

Bando n. 18211/2016

Problem 2.18 A muon with energy of 400 GeV penetrates vertically into the sea.
By which process can it be detected? Estimate the depth at which the muon arrives
before decaying.

Solution

A muon of energy E = 400 GeV moving in water (n = 1.33) emits Cherenkov
radiation at a rate of about 200 γ /cm in the wavelength range [300, 500] nm, see
Eq. (2.16).

The critical energy for electrons in water is about 80 MeV, see e.g. Ref. [5]. From
the ∼m2 scaling of the critical energy with the particle mass, the critical energy
for muons is expected to be in excess of 3 TeV, hence far above the initial muon
energy of 400 GeV. However, as discussed in Problem 2.10, the naive scaling is only
approximate, and the critical energy for muons is about 1 TeV [5], hence still larger
than the initial muon energy. From Fig. 33.24 of Ref. [2] we see that the critical energy
for oxygen is about 900 GeV, so the same conclusions hold. The dominant energy
loss mechanism is therefore by electron collision as described by the Bethe formula
of Eq. (2.1). Since γ = E/m = 3.8×103  1, we can use the approximate formula
of Eq. (2.34) to predict the range R in water (ρ = 1 g cm−3) to be R ≈ E/C , where C
is a constant that sets the plateau level of the Bethe formula. The stopping power for a
MIP muon in water is about 2.0 MeV g−1 cm2 [5]. However, at very large energies, the
logarithmic term is non-negligible. Using the value I = 80 eV [5], the latter ranges
from≈26 atγ = 3.8×103 down to≈12 atγ = 4 (MIP). Taking an intermediate value
of 20, the constant term can be approximated as 2.0 × 20/12 ≈ 3.3 MeV g−1 cm2.
Therefore:

R ≈ 400 GeV

3.3 MeV g−1 cm2 · 1 g cm−3
= 1.2 km. (2.60)

This result is in good agreement with the more accurate estimate of 1.216 km from
Table II-28 of Ref [10]. However, the muon is an unstable particle with life-time
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τ = 2.2 × 10−6 s. The range calculation of Eq. (2.60) will hold only if the muon
does not decay before coming to a stop. This is indeed the case with high probability.
Although the muon momentum progressively changes as the muon penetrates deeper
into the sea, time dilatation makes such that the muon decay probability over a
fixed length in the Earth frame is significant only for small velocities. At a velocity
β = 0.94, or γ ≈ 3, the muon is at the minimum of the stopping power curve, and
the residual energy is dissipated after traversing a length of about

106 MeV

2.0 MeV g−1 cm2 · 1 g cm−3

(3 − 1)2

3
= 70 cm � R. (2.61)

Were the muon to conserve γ = 3, its mean path before decaying would be βcτγ ≈
2 km, so much larger than the residual path before stopping completely.

Discussion

The exploitation of large sea volumes as Cherenkov radiators allows one to study
cosmic radiation of very high energy. For example, the IceCube neutrino observatory
at the South Pole, is sensitive to the CC interaction of very-high energy neutrinos,
which can be detected through their emission of Cherenkov light by an array of
PMT’s located deep into the ice.

Problem 2.19 An underground experiment located at a depth d = 1 km from the top
of the mountain measures the momentum of cosmic muons arriving vertically from
above. Estimate the muon energy at the top of the mountain if the muon momentum
at the detector is |p| = 1.0 TeV.

Solution

Energetic muons lose energy by electron collision and by various forms of electro-
magnetic radiation, including e+e− pair production, bremsstrahlung, and photonu-
clear interaction. The overall stopping power can be parametrised as

−d E

dx
= a(E) + b(E) E, (2.62)

where a and b are slowly varying functions of energy for E � 1 TeV. Assuming
constant values for a and b, Eq. (2.62) can be solved exactly to yield the solution
E0 = E0(E, x), namely:

{
− d E

dx = a + b E

E(0) = E0

− d E

a + b E
= dx, ln

(
1 + E/Eμc

1 + E0/Eμc

)
= −b x . E0 = eb x (

E + Eμc
) − Eμc,

(2.63)
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where, by definition, Eμc ≡ a/b is the energy at which energy loss by ionisation
equals the energy loss by radiation. Using the values a = 2.7 MeV g−1 cm2 and
b = 3.9 × 10−6 g−1 cm2 from Table 29.2 of Ref. [2], and by assuming the standard
rock density ρ = 2.65 g cm−3, we get Eμc = 0.69 TeV and:

E0 = (
exp

[
3.9 × 10−6 g−1 cm2 · 2.65 g cm−3 · 105 cm

] · 1.69 − 0.69
)

TeV =
= 4.0 TeV. (2.64)

Suggested Readings

For more details on cosmic muons and their interaction with matter, the reader is
addressed to Sect. 29.4 and Sect. 33.6 of Ref. [2].

Problem 2.20 The vertical flux of cosmic muons with Eμ > 1 GeV at the sea
level is about 70 m−2 s−1 sr−1, and the muon spectrum goes approximately as E−2.7

μ .
Owing to the continuous slowing down and subsequent decay, the muon spectrum
underground reduces with depth untill a depth of about 10 km w.e. (1 km w.e. =
105 g cm−2) is attained. At this point, the spectrum settles to a constant value. Explain
this behaviour and provide a rought estimate of the muon flux deep underground.

Solution

At a depth d larger than a few km w.e., only muons with energies of order of Eμc or
larger can make their way through the underground soil, see Problem 2.19. In this
energy regime, however, the range scales logarithmically with the muon energy at
the sea level E0:

R(E0) ≈ b−1 ln

(
1 + E0

Eμc

)
, (2.65)

where a and b are the constants introduced in Problem 2.19. Equation (2.65) implies
an exponential suppression of the flux at large depths. At some point, the muon flux
becomes so weak that another source of underground muons takes over, namely muon
production from charged-current interaction of muon neutrinos with the rock. The
latter is almost independent on the depth. For example, let’s consider the infinitesimal
flux of neutrinos with energy in the range [Eν, Eν +d Eν]: they will contribute to the
measured muon flux of energy Eμ ≥ Eth, where Eth is the detector threshold energy,
only if the muon interacts with the rock within a distance r = R − Eth/(d Eμ/dx)

from the underground level d (we make the approximation Eμ ≈ Eν). The probability
for such interaction is r/λ � 1, where λ is the interaction length and depends on
the neutrino energy, see Eq. (1.291). For Emin = 1 GeV, the offset R − r is about
200 m. The neutrino spectrum can be assumed to be similar to the muon spectrum,
since for every muon, a νμ of similar energy is produced, see Problem 1.19. The
neutrino-induced flux can be thus estimated to be:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Φdeep
μ ≈

∫ Emax

Emin

d Eν

dΦ0
ν

d Eν

(
R(Eν) − 200 m

λ(Eν)

)
(2.66)

The maximum energy Emax can be assumed to be of order of Eμc, since for larger
energies the range becomes only mildly dependent on the muon energy, see Eq. (2.65),
and thus it will contribute by one power less to the muon flux. Although the muon
spectrum at Eμ � 10 GeV decreases slower than E−2.7

μ , for an order-of-magnitude
estimate we can assume for simplicity:

dΦ0
ν

d Eν

= (α − 1)(1 GeV)α−1Φ0 E−α
ν , (2.67)

with Φ0 = 70 m−2 s−1 sr−1 and α = 2.7. By using d Eμ/dx = 1.9 MeV g−1 cm2 [5]
and the cross section of Eq (1.354) for the neutrino-nucleon scattering (with Q ≈ 1),
and neglecting for simplicity the offset of 200 m, we have:

Φ
deep
μ ∼

∫ Eμc

1 GeV
d Eν

dΦ0
ν

d Eν

(
Eν

1.9 MeV g−1 cm2 · ρ

)(
ρ · NA

A
· 1.6 × 10−38 cm2 Eν

GeV

)
=

= Φ0 · 0.23 × 10−12
(

α − 1

3 − α

) (1 GeV)α−1
(

E3−α
μc − (1 GeV)3−α

)
GeV2 ≈

≈ 10−9 m−2 s−1 sr−1. (2.68)

The result depends only mildly on the choice of Emax. This order-of-magnitude
estimate is in a decent agreement with the measured spectrum, see e.g. Fig. 2.7 taken
from Ref. [2].

Fig. 2.7 Vertical muon
intensity versus depth. From
Ref. [2]

001011

011 2 5

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

More details on cosmic ray fluxes, including a review of theoretical calculation, can
be found in Ref. [11]. The reader is addressed to Sect. 29.4 of Ref. [2] for more details
on the muon flux underground.

2.2 Particle Identification

Particle identification (PID) is a common problem in particle physics experiments,
which are often equipped with a redundance of detectors as to be able to identify
the particle type besides measuring their kinematics. As a general rule, the pres-
ence of backgrounds and imperfections in the detector makes PID a statistical test
rather than a deterministic decision: the probability of correctly identifying a given
particle (efficiency) has always to be weighted against the probability of wrongly
identifying a background event (fake-rate). Depending on the particle type and on
its energy, a variety of methods can be deployed in experiments. A non-exhaustive
list of techniques for PID includes:

• Measurement of the range. Each particle loses energy by interaction with matter
at a different rate, so that the measured range can be used to differentiate between
different particle types. For example, a 10 GeV muon loses energy by collision
at a MIP rate of about 11 MeV cm−1, while an electron of the same energy loses
energy by radiation at a rate of about 550 MeV cm−1, i.e. about 50 times faster.
Hadronic particles interact strongly with the nuclei, with typical interaction lengths
of tens of centimetres for condensed materials. Therefore, the capability of muons
to penetrate massive detectors exceeds by far larger that of other particles.

• Measurement of the stopping power. Even if the particle range is not fully con-
tained within the active volume of a detector, the simultaneous measurement of
the stopping power d E/dx and of the particle energy, or momentum, provides a
handle to distinguish between different particles. The stopping power can be mea-
sured from the energy deposited within the detector. Time Projection Chambers,
proportional chambers, nuclear emulsions, solid-state detectors are examples of
detectors which can measure the energy loss across the particle trajectory.

• Cherenkov-light detection. Relativistic particles can emit Cherenkov lights when
moving inside a refractive medium. The angle of emission and the number of
emitted photons depend on the particle velocity β as for Eq. (2.15) and Eq. (2.21).
A simultaneous measurement of the particle momentum and of the Cherenkov
light can be thus used to determine the particle mass.

• Transition-light detection. For high-energy particles, Cherenkov detectors as par-
ticle identifiers become inefficient, see Eq. (2.21). An alternative to using the
β-dependence of Cherenkov detectors is provided by the use of transition radia-
tion detectors, which are sensitive to the light emitted by charged particles while
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crossing the separation surface between vacuum and a dielectric material. Since
the intensity of the emitted radiation is proportional to the γ -factor of the particle
as for Eq. (2.22), particles of a given momentum, but very different mass, like pions
and electrons, can be efficiently separated by measuring their transition light.

• Measurement of the time-of-flight. A simultaneous measurement of the particle
momentum and of the TOF over known distances, allows to determine the particle
mass. For unstable particles that decay in reconstructable vertices, the TOF can
be measured from the distance traveled by the particle before decaying. Once
combined with momentum information, this allows to infere the particle life-time
(see Problem 1.32), and hence the particle type.

• Kinematics. In scattering experiments where the kinematics of the initial and final
state can be measured, four-momentum conservation can be used to infere the
mass of the particles involved in the scattering, see e.g. Problem 1.27, 1.28, and
1.62. For unstable particles, the kinematics of the decay products can be used to
reconstruct the decay process, from which the mass of the mother particle can be
inferred, see e.g. Problems 1.16, 1.20, 1.23, and 1.37.

Problems

Bando n. 13153/2009

Problem 2.21 Mention two methods of identification for charged particles, indicat-
ing the range of applicability and their complementarity.

Solution

At small velocities, the simultaneous measurement of the particle momentum |p|
and of its time-of-flight over a known distance, or of the stopping power d E/dx , or
of the Cherenkov light emission, represent canonical techniques for PID. However,
at higher energies, all these methods become inefficient due to the saturation of the
particle velocity to β → 1, so that the TOF over a baseline distance L saturates to
L/c for all particles, the stopping power (by collision) becomes only logarithmically
sensitive to the particle velocity, while for Cherenkov detectors this is due to the fact
that the sensitivity to mass differences is suppressed by |p|−2, see Problem 2.25.

At larger energies, one can instead exploit the emission of transition radiation,
whose intensity is proportional to the γ -factor of the particle. High-energy electrons
can be discriminated from other charged particles thanks to their larger emission
of bremstrahlung radiation. In high-energy experiments, a combination of tracking
and energy measurements in segmented calorimeters is sometimes used for PID:
a calorimeter consisting of an electromagnetic (ECAL) and an hadronic (HCAL)
section with independent read-out offers the possibility to separate electrons, which
are stopped in ECAL, from hadrons, which interact in both. The attempt to reconstruct
and identify each and every particle in a HEP event is called particle flow and was
pioneered at LEP [12].

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

The PDG review of particle detectors at colliders provides a comprehensive and
up-to-date overview of detectors for PID. Introductory textbooks like Ref. [13] are
also indicated for a first overview on the subject. Besides the already quoted ALEPH
publication [12], the reader is encouraged to read about PID within the particle flow
algorithm as implemented in the CMS event reconstruction [14].

Bando n. 13153/2009

Problem 2.22 Discuss a few techniques for neutron detection as a function of the
neutron energy.

Solution

Neutrons with energies in excess of a few GeV are best measured by hadronic
calorimeters, i.e. devices that degrade the initial hadron energy by initiating a
hadronic cascade and measure the visible energy deposited by the cascade parti-
cles, which is usually proportional to the incoming neutron energy, see Problem 2.35
for more details.

The detection of fast neutrons relies on the detection of the recoil proton in (n, p)

scatterings. This is best achieved by using plastic or liquid organic scintillators, whose
molecules contain hydrogen. Given the different fluorescent response of organic
compounds to particles of different ionisation power, these materials can also offer
n/γ discrimination by pulse-shape analysis.

For thermal neutrons, one usually relies on the nuclear reactions (n, γ ) and (n, α),
which can be e.g. detected by using liquid, glass, or inorganic scintillators, like
Li I (Eu), or gaseous ionisation detectors, like 3He, B F3. The active material is con-
veniently loaded with suitable nuclei like 3He, 6Li, and 10B, which have large cross
sections for the reactions:

3He (n, p) t, 6Li (n, t) 4He, 10B (n, α) 7Li(∗), (2.69)

respectively. The kinetic energy of the emitted particles (protons, tritium, α-particles,
Li ions) peakes at values determined by the Q-value of the reactions, thus allowing
to separate the neutron signals from other backgrounds, most notably by photon
interactions.

Suggested Readings

Chapter 7.7 of Ref. [1] describes the pulse-shape technique with scintillators and
provides an introduction to various experimental techniques for neutron detection.

Bando n. 1N/R3/SUB/2005
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Problem 2.23 In order to separate K + and π+ in a momentum window between
700 MeV and 4 GeV, one can use two threshold Cherenkov detectors operated in
series. Neglecting possible inefficiencies of the detectors near the threshold, deter-
mine which values of the refraction index can be chosen, and propose a suitable
radiator.

Discussion

Although not mentioned explicitly, Cherenkov detectors are often integrated with
spectrometers or other detectors that can measure the momentum of the particle. For
example, Cherenkov detectors can be employed to select particles of a given type
from a composite beam of given momentum.

Solution

The momentum acceptance of the experiment provides four threshold velocities and
as many refraction indexes, namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n < 1.0006 no π emit

n > 1.0195 all π emit

n < 1.0076 no K emit

n > 1.22 all K emit

(2.70)

With two counters at hand, one could set counter A at a value of nA = 1.0195, so
that no signal there would imply that the particle is a kaon (K -tag), and counter B
at a value nB = 1.0076, so that a signal in that counter would imply that the particle
is not a kaon (π -tag). With this scheme one has three possibilities, summarised in
Table 2.5. The third row (all counters with no-signal) represents a useful event only
if the experiment is equipped with an independent trigger (e.g. a scintillator located
along the beam direction). However, there remains an ambiguity for the case where
only counter A records a signal. If one further assumes that the particle momentum
can be measured, then the ambiguity is lifted. Indeed, if one considers pions and
kaons with velocities in the range [1/nA, 1/nB], the corresponding momenta span
two non-intersecting ranges:

1

nA
< β <

1

nB
⇒ |p| ∈

{
[0.70, 1.12] GeV π

[2.49, 4.0] GeV K
(2.71)

so that a simultaneous measurement of the particle momentum and of the Cherenkov
counters can discriminate between the two particles. Figure 2.8 shows the critical
index 1/β for the two particle types as a function of |p|. The dashed lines indicate
the indexes chosen for counters A and B, while the vertical arrows mark the upper
and lower momenta at which pions fail to generate a signal in B and kaons generate a
signal in A, respectively. Concerning the choice of radiator medium, we can refer to
Table 2.4 to identify possible candidates. In particular, we see that a value of n −1 ≈
2×10−2 can be obtained for example by using aerogels, while n −1 ≈ 7×10−3 can
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Table 2.5 Possible outcomes of a single-particle event using two threshold Cherenkov detectors
in series with NA > nB

A B Particle

1 1 π

1 0 π or K

0 0 K

0 1 Not possible

Fig. 2.8 The critical index
1/β for the two particle
types as a function of |p|.
The dashed lines indicate the
indexes chosen for counters
A and B, while the vertical
arrows mark the upper and
lower momenta at which
pions fail to generate a signal
in B and kaons generate a
signal in A, respectively

be obtained by using e.g. pentane (C5H12) or perfluoropentane (C5F12) of appropriate
temperature and pressure.

Bando n. 13153/2009

Problem 2.24 Explain how the Cherenkov threshold depends on the refraction index
of the medium. Three particles of different mass but same momentum |p| cross a
system of two Cherenkov detectors arranged in series. How can the three particles
be identified?

Solution

The Cherenkov threshold is the velocity β that equals the group velocity of light in
the medium, i.e. β = 1/n, where n is the refraction index. By definition, vacuum
has n = 1, and n > 1 for any other medium, see Table 2.4 for a few representative
materials.

Given two threshold Cherenkov detectors A and B operated in series, the identifi-
cation of three particles of different mass but same momentum |p|, such that the three
particles have velocities β1 < β2 < β3, can be achieved by setting the refraction
index of the two counters at nA = 1/β1 and nB = 1/β2, so that:

• particle (1) is below threshold in both counters (β1 ≤ 1/nA, 1/nB), thus producing
no signal in any of the two counters.
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• particle (2) is above threshold in counter A (β2 > 1/nA), but below threshold in
counter B (β2 ≤ 1/nB), thus producing a signal in only one counter;

• particle (3) is above threshold (β3 > 1/nA, 1/nB) in both detectors, thus producing
a signal in both counters;

An analysis of the signal output in the two counters can thus reveal which of the
three particles has crossed the detector. This configuration also maximises the light
yield when the particle is above threshold.

Problem 2.25 A Cherenkov imaging detector measures the angle θ of Cherenkov
photons with a resolution σθ = 2 mrad. What is the largest beam momentum |p|
such that kaons and pions can be discriminated to better than 3σ by the angular
measurement only, if the Cherenkov radiator consists of fused silica (n = 1.474) or
fluorocarbon gas (n = 1.0017)?

Solution

Let the Cherenkov angle be denoted by θ . A separation to better than 3σ amounts
to require Δθ/σθ ≥ 3. By approximating finite differences by their differentials, we
get:

Δθ

σθ

≈ dθ

σθ

= 1

σθ sin θ
d cos θ = β

σθ

√
β2 n2 − 1

d

(
1

β

)
= β2 dm2

2 σθ

√
β2 n2 − 1 |p|2

≈ |m2
K − m2

π |
2σθ

√
n2 − 1|p|2 . (2.72)

Hence, the largest momentum for which the statistical separation is in excess of
Nσ = 3σ is provided by:

|p| <
|m2

K − m2
π |[

Nσ · 2σθ

√
n2 − 1

] 1
2

=
⎧⎨
⎩

0.474 GeV√
3·2·2×10−3·√1.4742−1

= 4.2 GeV silica

0.474 GeV√
3·2·2×10−3·√1.00172−1

= 18 GeV fluorocarbon

(2.73)

Suggested Readings

This problem is inspired by Sect. 34.5 of Ref. [2]. The reader is addressed to this
reference for more information on the subject.
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Problem 2.26 Tellurium dioxide (Te O2) crystals (n = 2.4, ρ = 6 g cm−3) have
been used to search for the putative neutrinoless double-beta decay 130

52 Te →130
54 Xe

in bolometric calorimeters. The experimental signature is provided by an energy
deposit around 2.53 MeV. A major background to this process is represented by
α-decays of radioactive contaminants. Show that the simultaneous measurement of
Cherenkov photons and calorimetric energy would allow to separate α particles from
signal events. Estimate the mean number of Cherenkov photons with wavelengths
in the range [350, 600] nm produced by a signal event in a few centimetres long
crystals.

Discussion

Differently from an ordinary double-β decay (2νββ), where a nucleus A
Z X decays to

A
Z+2Y + 2ν + 2e−, a neutrinoless double-β decay (0νββ) does not produce neutrinos
in the final state. The Q-value of the reaction, see Problem 1.39, is entirely taken by
the two electrons: their energy sum is therefore a line around Q smeared by the detec-
tor resolution. This also implies that the electron energies are fully anticorrelated.
The theoretical energy distributions for this decay can be found in Ref. [15]. Alpha
particles of a few MeV energy, typical of radioactive decays, behave like background
events by releasing their energy in the calorimeter.

Solution

In order to prove that the electrons radiate Cherenkov light while the α particles do
not, it suffices to verify that the threshold velocity β = 1/n = 0.717 in Te O2 is
above the velocity of α’s, but below the velocity of at least one of the electrons.
Assuming Tα = 2.53 MeV, one has

βα ≈
√

2Tα

mα

=
√

2 · 2.53 MeV

3.73 GeV
= 0.037 < β, (2.74)

while for a 0νββ decay:

max βe >

√
1 −

(
me

Q/2 + me

)2

=
√

1 −
(

0.511 MeV

1.77 MeV

)2

= 0.958 > β. (2.75)

To good approximation, the total range and the number of Cherenkov photons are
independent of the energy sharing between the two electrons, thanks to the anti-
correlation between the two energies. Indeed, for γ  1, the range is a linear function
of energy as for Eq. (2.32). In the case of interest, though, the average kinetic energy
is comparable to me, so the linearity is lost. However, a numerical investigation shows
that the total range is constant to within 15% over the allowed electron spectrum,
and is larger when the energy sharing is more asymmetric. Furthermore, Eq. (2.32)
is expected to underestimates the true range for small values of γ , and one should
rather use the full calculation. To circumvent the lack of tabulated data and the
mild dependence on the kinematics, we consider a particular decay configuration,

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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namely T1 = 1.0 MeV and T2 = Q − T1 ≈ 1.5 MeV. We then approximate the
stopping power by averaging the tabulated values for two similar materials: Na I,
which contains Iodine, a Tellurium neighbour in the periodic table, and Ti O2, which
is also a metal dioxide. At T = 1 MeV, Ref. [16] gives:

R1(Na I) = 0.69 g cm−2, R1(Ti O2) = 0.55 g cm−2, (2.76)

Taking the mean, we get R1 ≈ 0.64 g cm−2, or 0.10 cm. There are no values tabulated
for T = 1.5 MeV, but we can use the scaling predicted by Eq. (2.32), giving a ratio
R2/R1 = 1.69. Hence, R2 ≈ 0.175 cm. The light output in the wavelength window
[350, 600] nm can be estimated by using Eq. (2.16) with 〈sin2 θ〉 ≈ 1−1/n2, giving:

Nγ ≈ (0.10 + 0.175) cm
1.15 × 103 cm−1

√
600 · 350/400

(
1 − 1

2.42

)
600 − 350√

600 · 350

= 46 + 79 = 125, (2.77)

which agrees with the more accurate expectation of Ref. [17], which averages the
range over the proper energy spectrum.

Suggested Readings

The idea of exploiting Cherenkov radiation in bolometric detectors has been first
proposed in Ref. [17], from which the problem is largely inspired.

Problem 2.27 A threshold Cherenkov detector is used to separate muons from pions
in a beam with momentum |p| = 150 MeV. What values of the refraction index n
can be used?

Solution

The condition for which muons emit Cherenkov light, while pions do not, is given
by:

1/βμ < n < 1/βπ ⇔
√(

mμ

|p|
)2

+ 1 < n <

√(
mπ

|p|
)2

+ 1,

giving the result: 1.22 < n < 1.37.

Bando n. 1N/R3/SUB/2005

Problem 2.28 An experiment needs to distinguish pions from kaons of momentum
|p| = 2 GeV by measuring the time flight on a L = 2 m baseline. The instrumentation
has a time resolution σt = 0.2 ns. Can each particle be identified? With which
precision can the pion fraction be determined?
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Solution

The time-of-flight (TOF) for pions and kaons in the beam is given by:

t = L

βc
= L

c

√
1 + m2

|p|2 = 2 m

3 × 108 m s−2

⎧⎨
⎩
√

1 − (
0.139

2

)2 = 6.68 ns π√
1 − (

0.494
2

)2 = 6.87 ns K
(2.78)

Since Δt = 0.19 ns ≈ σt , particle-by-particle identification is affected by a large
statistical uncertainty, i.e. the Type-II error is large for any given efficiency to identify
the correct particle type. For example, if we decided to tag a particle as a K if the
TOF is in excess of 6.87 − 1σt = 6.67 ns, the selection efficiency would be 84%,
for a fake-rate of about 50%. Even though an event-by-event classification is not
very accurate, the pion (or kaon) fraction of the beam can be estimated with large
accuracy for a sufficiently large number of measurements. Assuming N independent
and gaussian distributed measurements X = {Xi }, the maximum-likelihood (ML)
estimator of the pion fraction ε̄π is given by the solution of the equation:

0 = ∂L(X, επ )

∂επ

∣∣∣∣
ε̂π

,

with L =
N∏

i=1

f (Xi , επ ) =
N∏

i=1

[επ N (Xi | tπ , σt ) + (1 − επ)N (Xi | tK , σt )]

(2.79)

The classical theory of estimators predicts that the asymptotic variance of the ML
estimator is given by

Var
[
ε̂π

] = 1

N I (ε̂π )
, with I (ε̂π ) = E

[
−∂2 ln f (x, επ )

∂2επ

]
, (2.80)

see Sect. 4.1. The information can be computed numerically using a simple program
for different values of επ , see Appendix 2.3. The result is a number of O(1): for
example, for επ = 0.1 (0.3) one gets I = 1.03 (0.80). Hence, the standard deviation
on the pion fraction will be given by:

σε̂π
≈ 1√

N
. (2.81)

Problem 2.29 In 1987, the water Cherenkov detector Kamiokande-II in the Kamioka
mine (Japan), detected a neutrino burst that was attributed to a supernova event
occurred at a distance d = 5.5 × 104 kpc from the Earth. The energy and arrival
time at the detector could be measured for those (anti)neutrinos that interacted via
the charged-current (CC) scattering ν̄ p → n e+, or by the electron-scattering (ES)

http://dx.doi.org/10.1007/978-3-319-70494-4_4
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Fig. 2.9 Scatter plot of
energy and time for the
twelve supernova candidate
events recorded by
Kamionkande in 1987 (from
Ref. [18])

reaction νe e− → νe e−, within the fiducial volume of the detector. During a time
interval Δt = 12 s, a total of 12 events were registered. The time vs energy diagram
of the signal events is reported in the Fig. 2.9.

• The Kamiokande experiment could not distinguish electrons from positrons by
using the sole Cherenkov light. How was it then possible to separate νe from ν̄e?

• Explain how the antineutrino energy Eν̄ could be measured from the positron
energy Ee+ .

• Determine a lower bound to the νe lifetime.
• Using the data reported in the plot, estimate an upper bound to the electron neutrino

mass mνe .

Discussion

As of 1987, the Kamiokande-II experiment consisted of a cylindric water tank con-
taining over 2000 t of water instrumented with uniformly distributed PMT’s covering
about 20% of the total surface. The PMT’s were sensitive to the Cherenkov light in the
range 300÷500 nm. At these wavelengths, the light attenuation length exceeds 50 m,
thus allowing an efficient light collection all across the fiducial volume. The event
trigger, production vertex, direction, and energy of the particles were reconstructed
by using the charge and time stamp of all PMT with a signal above the noise. The
single-PMT time resolution was 13 ns, while the relative energy resolution was esti-
mated from simulation to be about 20%. An electron neutrino with energy of about
10 MeV interacts mostly through ES on the atomic electrons. The CC interaction
with the transmutation 16

6 O → 16
7 F is instead suppressed by the large mass difference

B(16
6 O) − B(16

7 F) ≈ 16 MeV. Conversely, an electron antinutrino interacts mostly
through the CC reaction ν̄ p → n e+, provided Eν̄ � 2 MeV. The main background
to ∼10 MeV electrons and positrons is represented by cosmic muons, β-decays of
unstable isotopes polluting the water, and by γ /n radiation from the cavern walls.

Solution

The separation between electrons and positrons is possible on a statistical basis.
Indeed, the CC scattering for antineutrino energies Eν̄ ≈ 10 MeV is isotropic in the
laboratory frame. This can be proved as follows. First, one notices that the velocity of
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the centre-of-mass frame is β = Eν̄/(Eν̄ + m p) ≈ 10−2, so that the centre-of-mass
is almost at rest in the laboratory frame. In the latter, the dynamics is governed by
the exchange of a virtual W boson, as described by the Fermi Lagrangian:

LF = GF√
2

cos θC
[
n̄γμ(1 − αγ5)p

] [
ν̄γ μ(1 − γ5)e

]
. (2.82)

The amplitude squared can be obtained with the usual Casimir’s tricks. By taking
α = −1, it becomes proportional to (pe+ pp)(pν̄ pn) ≈ Ee+ Eν̄ m p mn , if the neu-
tron recoil is neglected compared to the nucleon mass. In this case, Ee+ is also a
constant, hence the ampitude squared itself is constant. From Problem 1.53 and the
considerations above, we can see that the cross section is roughly isotropic in the
laboratory frame. This is not the case for the ES, since the centre-of-mass velocity is
now β = Eν̄/(Eν̄ + me) ≈ 1. which gives rise to a very forward-peaked differential
cross section in the laboratory frame, see Problem 1.15.

For the antineutrino scattering, energy conservation implies

Eν̄ + m p = Ee+ + mn ⇒ Eν̄ ≈ Ee+ + (mn − m p)︸ ︷︷ ︸
1.3 MeV

. (2.83)

The neutrino lifetime, τν , has to be large enough so that the neutrinos can make
it to Earth, i.e.:

τν � d

c γν

= 5.5 × 104 pc

c (Eν/mν)
= 5.5 × 104 · 3.3 c · y

c (Eν/mν)
= 1.8 × 105

(
mν

Eν

)
y, (2.84)

where we have used the relation 1 pc ≈ 3.3 c · y.
If the neutrino burst starts at the time t = 0, the arrival time at the detector is:

t = d

βν c
= d

c

1√
1 − (mν/Eν)

2
≈ d

c

[
1 + 1

2

(
mν

Eν

)2
]

. (2.85)

Two neutrinos of energies E1 and E2, emitted at the same time t = 0, will arrive at
destination with a time separation:

t1 − t2 = d

2c
m2

ν

(
1

E2
1

− 1

E2
2

)
. (2.86)

From the recorded data, we observe the presence of a few neutrino events separated
by about 10 s from the the first burst events, which is larger than the expected duration
of a supernova burst (a few seconds), is an indication that neutrinos have a mass, since
otherwise they would have arrived all in one shot. The presence of two populations
of events, one located within the first second, and the other around t = 2 s, which
are not distributed according to Eq. (2.85), indicates, though, that the pattern of

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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neutrino emission from the supernova has some non-trivial time dependence, i.e.
one cannot assume a perfectly synchronous burst. Yet, some of the neutrinos must
have been created simultaneously, and with some broad spectrum of energies, so that
any difference in arrival time has to be attributed to the non-zero neutrino mass. A
conservative upper limit on mν can thus be obtained by considering, those events that
feature the largest energy difference |ΔE | among the first and last arrived events,
respectively. From the plot, we take e.g.: (E1, t1) = (35 MeV, 1.5 s) and (E2, t2) =
(10 MeV, 12.5 s). Inverting Eq. (2.86), we have:

mν �
√

2c (t1 − t2)

d

E1 E2√
E2

2 − E2
1

≈ 20 eV. (2.87)

Suggested Readings

This problem is inspired by the Kamiokande publication of Ref. [18].

Bando n. 18211/2016

Problem 2.30 A νμ beam with an energy of 30 GeV enters a detector containing
liquid Ar. A fraction of the events features a few metres long track starting from the
interaction point, while, for a smaller fraction of the events, all tracks are contained
within a small volume. Explain this behaviour.

Solution

As already discussed in Problem 1.64, neutrinos can undergo interactions with both
the nuclei and and the atomic electrons, the latter having a cross section suppressed
by a factor of me/m N . In both cases, the neutrinos can interact via either the charged
current, νμ X → μ− Y , or the neutral current interaction, νμ X → νμ X ′. The EWK
theory predicts the ratio between neutral and charged current cross section in terms
of the Weinberg angle θW to be:

(
σNC

σCC

)
ν

= 1

2
− sin2 θW + 20

27
sin4 θW ≈ 0.31, (2.88)

see e.g. Ref. [19]. When a neutrino of energy Eν = 30 GeV interacts via CC, it
produces a muon of similar energy, which being a MIP, is highly penetrating in
the Ar medium and can be therefore identified as a long track. Conversely, in the
occurrence of a NC interaction, the only detectable signal is provided by the recoil
of the struck nucleus. Since DIS prevails in this energy regime, the interaction is
inelastic and results in a number of hadronic particles which, being much heavier
than the muon and less energetic, have smaller range, thus appearing as a set of short
tracks emerging from the interaction point.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

The reader is addressed to Chap. 12 of Ref. [19] for more information on neutrino
interactions in matter.

Problem 2.31 A charged particle is moving inside a uniform magnetic field of inten-
sity B = 1.0 T. The radius of curvature of the track is R = 7.25 m with negligible
error. The kinetic energy of the particle is measured to be T = (2.00 ± 0.03) GeV.
Determine which type of particle is most probably being measured.

Solution

The charge sign is fixed by the direction of curvature. The particle momentum |p| is
instead given by the formula:

|p| = 0.3 |z| (B/T) (R/m) GeV = 2.20 |z| GeV, (2.89)

where z is the particle charge in units of the proton charge e, see Problem 3.3. The
particle mass m is therefore given by:

m2 = (T + m)2 − |p|2, m = |p|2 − T 2

2T
= (2.20 · z)2 − (2.00)2

2 · 2.00
GeV.

(2.90)

The uncertainty on m can be obtained by propagating the uncertainty on T :

Δm =
∣∣∣∣∂m

∂T

∣∣∣∣ΔT = 1 + |p|2/T 2

2
ΔT = 1 + (2.20 · z/2.00)2

2
· 0.03 GeV. (2.91)

Stable, non-exotic particles have integer charges. We can therefore try different ansatz
values of |z| and compare the result with the known spectrum of particles. For |z| = 1,
Eq. (2.90) gives m = (210 ± 30) MeV, which does not match any known particle
within the experimental uncertainty. For |z| = 2, one has m = (3.84 ± 0.09) GeV,
which is compatible with the mass of the α particle mα = 3.73 GeV at the 1σ level.

Bando n. 13153/2009

Problem 2.32 Describe which methods could be used to measure lifetimes of order
109 years, 10−12 s, and 10−22 s.

Solution

Lifetimes of order 109 years are typical of radioactive decays. Such lifetimes can be
measured by counting the number of decays in a sample and in a given time interval
Δt . Let NC be the number of countings after background-subtraction. Under the
assumption τ  Δt , the lifetime can be measured from the relation:

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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τ = V ρ NA

A

Δt

NC
, (2.92)

where V is the volume of the sample being observed.
Lifetimes of order 10−12 s are characteristics of weakly decaying particles, like

D and B mesons, or τ leptons. Since c = 3×102 µm/ps, the decay vertexes of such
particles are of order 300 µm, when the particles are produced at relativistic ener-
gies. Silicon detectors, with intrinsic spatial resolutions of a few tens of microns or
better, see Problem 2.43, are ideal candidates to build vertex detectors with sufficient
resolution to resolve such decays.

Lifetimes of 10−22 s are characteristics of strongly decaying particles, like the
ρ and ω mesons, or the Δ baryon. The distance of flight is far too small to be
measurable by any position-measuring device. Such lifetimes are therefore indirectly
estimated from the decay width Γ of Eqs. (1.186), as measured from the invariant
mass distributions of the decay products, or from the production cross section.

2.3 Functioning of Particle Detectors

Particle detectors record the passage of particles. Depending on the detector type
and on the form of radiation it is sensitive to, detectors can be used to measure the
position and time of arrival of a given particle at the detector location, the energy
and direction of the incoming particle, and sometimes even identify the type of
particle. Detectors are usually composed of an active volume, which interacts with
the particle, and a readout component, hosting the electronics required to generate an
electric signal, provide signal amplification to improve the signal-over-noise ratio,
and finally shape the signal according to some logic suitable for later processing
in the experiment or for persistent data storage. In modern experiments, detectors
are commonly operated by computers, which supervise their correct functioning
and take care of data acquisition. The field of particle detection is vast and finds
application that range from pure research to industry. No attemp is made here to give
a comprehensive overview on this subject. The selected problems want to discuss
the main technologies and introduce general concepts, like resolution, efficiency,
dead time.

Problems

Bando n. 1N/R3/SUB/2005

Problem 2.33 In an electromagnetic calorimeter, the stochastic contribution to the
resolution is 0.07/

√
E . Can we conclude that the energy resolution for an electron

of energy E = 50 GeV is 1%?

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Discussion

Electromagnetic calorimeters are detectors that measure the kinetic energy of charged
particles by exploiting one or more interaction mechanisms between charged particles
and matter, including fluorescence, Cherenkov light emission, and ionisation. In
general, only a fraction of the total initial energy is converted into a visible signal: the
proportionality between the measured signal and the total energy allows to measure
the latter, after a proper calibration is performed. Electromagnetic calorimeters can
be broadly classified into two categories: homogeneous and sampling, depending on
whether the active medium is composed of the same material, or interleaved with
layers of inactive absorbers which degrade the energy of the incoming particle. The
total energy resolution depends on the choice of active material, which determines
the statistics of signal carriers per unit of deposited energy (e.g. the statistics of
scintillation photons), on the signal generation and electronics (efficiency of the
photodetector, electronic noise), and on other geometrical properties of the detector
(e.g. uniformity, dependence of the response with the particle impact point, etc.).
In most applications, the relative energy resolution can be parametrised in terms of
these three contributions as:

σ(E)

E
= a√

E
⊕ b

E
⊕ c, (2.93)

where the symbol ⊕ indicates sum in quadrature. The three contributions are called
stochastic, noise, and constant term, respectively. As a general rule, homogeneous
calorimeters shine for their small stochastic term of order 1% in units of 1/

√
E/GeV,

while for sampling calorimeters the stochastic term is in the range 5 ÷ 20%, in the
same units. The importance of the noise term a depends on the signal collection
type: scintillation and Cherenkov calorimeters coupled to high-gain PMT suffers
the least from the electronic noise, while the noise is usually larger for calorimeters
that collect the signal in the form of charge (e.g. semiconductive, gas sampling, and
noble-gas calorimeters), since a preamplifier is the first element in the readout chain.
For this contribution to be subleading in the GeV range, the parameter b needs to be
kept at the 100 MeV level per channel. For use in high-energy experiments, where
particles with energies of hundreds of GeV need to be measured, the constant term
ends up to be the limiting factor to the ultimate energy resolution. As an example, the
electromagnetic calorimeters employed by the CMS and ATLAS experiments at the
LHC are built with different technologies, but achieve similar physics performances,
overall. The CMS detector makes use of a homogeneous scintillation calorimeter
based on PbWO4 crystals. A test beam on a small prototype yielded a stochastic
term of 3.3%/

√
E/GeV, a noise term of 0.19/(E/GeV), and a local constant term of

0.27%. When averaged over the full detector acceptance, the goal constant term needs
to be kept below 0.5%, which is challenging since the whole detector is composed
of about hundred thousand crystals that need to be inter-calibrated. This problem
is somehow relieved by the ATLAS setup, which uses instead a sampling liquid-Ar
calorimeter, at the price of increasing the stochastic term. A test beam on a prototype
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yielded a stochastic term of 10%/
√

E/GeV, a noise term of 0.25/(E/GeV), and a
local constant term of 0.3%.

Solution

As discussed above, the energy resolution of an electromagnetic calorimeter depends
on the energy as in Eq. (2.93). For an electron with E = 50 GeV and a calorimeter
with a = 7%, the stochastic term is 7%/

√
50 ≈ 1%. The latter has to be added in

quadrature to the constant and noise term to obtain the total relative energy resolution.
We can estimate an upper limit to the noise and constant terms such that they do not
contribute individually to the total relative resolution by more than a certain fraction
f , that we can conventionally set to e.g. f = 0.1. With this choice:

σ(E)/E − 1%

1%
< 0.1 ⇒

⎧⎨
⎩

1
2

(
b/50 GeV

1%

)2
� 0.1, b � 220 MeV

1
2

(
c

1%

)2 � 0.1, c � 0.5%
(2.94)

We can therefore conclude that the energy resolution for an electron of energy E =
50 GeV is about 1% provided that the noise and constant term are below about
200 MeV and 0.5%, respectively.

Suggested Readings

A succint but complete review of calorimetry in particle physics can be found in
Ref. [20]. More informations on the state-of-the-art in calorimetry can be found in
the PDG review [2] and references therein.

Bando n. 1N/R3/SUB/2005

Problem 2.34 A relativistic electron releases energy in a block of BGO, generating
a signal of about 106 p.e./GeV, while the signal generated in a block of lead glass of
the same size is only 103 p.e./GeV. How can such a difference be explained?

Discussion

Both BGO and lead glass feature a radiation length X0 of about 1 cm and a critical
energy of about 10 MeV [5]. An electron of few GeV energy loses energy mostly
by radiation. The emitted bremsstrahlung photons undergo pair-production, with
subsequent photon emission. The resulting electromagnetic shower is characterised
by an energy profile

d E

dt
= E0 b

(b t)a−1e−b t

Γ (a)
, (2.95)

where t = x/X0 and a and b are constants that depend on the material. Simplifying
the shower development as a series of 1 → 2 branches (e± → e±γ and γ → e+e−)
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with equal energy sharing and separated by a distance X0, so that the energy per
constituent at a depth t is E/2t , it follows that the total track length L(t) from
electrons, positrons, and photons, after traversing t radiation lengths is given by

L(t) = 2t X0. (2.96)

The maximum number of radiation lengths tmax is determined by the condition that the
electron/positron energy falls below the critical energy Ec, i.e. tmax = ln(E/Ec)/ ln 2,
and

L = 2
ln E/Ec

ln 2 X0 =
(

X0

Ec

)
E . (2.97)

A more refined treatment of shower development, will still predict the total track
length L to be proportional to the initial energy. Along their path, electrons and
positrons excite the fluorescent levels of the crystal, characterised by an average
excitation energy ε, so that the total photon output Nγ is still proportional to the
initial energy E .

Solution

BGO, an acronym for (Bi2 O3)2(Ge O2)3, is a scintillating crystal. The mean
excitation energy per photon is reported in Table 2.2 and is about 300 eV/γ , or
3 × 106 γ /GeV, which is in the ballpark of the value reported by the problem (the
ultimate p.e. statistics depends on the PMT collection and quantum efficiency). Lead
glass (Pb O) is an amorphous material and does not scintillate. It has a large refraction
index (n ≈ 1.8) and is transparent to visible wavelengths, which makes it a good
Cherenkov radiator. Assuming a quality factor N0 of about 90 cm−1, see Eq. (2.21),
and a total charged track length as in Eq. (2.97), an upper limit to the number of p.e.
per GeV can be estimated as:

Np.e.

E
= Np.e.

L

L

E
≈ 90 cm−1 〈sin2 θc〉 · (2/3)

X0

Ec
=

= 90 cm−1 · 0.69 · (2/3)
1.3 cm

10 MeV
= 5 × 103/GeV, (2.98)

where the factor of 2/3 accounts for the fact that only electrons and positrons pro-
duce Cherenkov light. This estimate does not account for the fact that the simple
shower model is not well representative of the energy distribution within the shower:
the bremsstrahlung cross section dσ/dν for emitting one photon with frequency ν

is approximately proportional to ν−1, see e.g. Eq. (2.68) of Ref. [1], so that the sec-
ondary e+e− pairs from γ conversion are preferably soft, with implications on the
total Cherenkov light yield. A more accurate estimation would yield a smaller value
Np.e./E ≈ 103/GeV [20].

The difference between the two materials can be therefore ascribed to the different
mechanism by which photoelectrons are produced in the two materials.
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Suggested Readings

The reader is addressed to Ref. [20] for a primer on calorimetry for particle physics.

Bando n. 13153/2009

Problem 2.35 Measuring the energy of hadronic particles through calorimetric
methods is a fundamental ingredient in HEP experiments. When a hadron produces
a shower, on average 30% of the initial energy is transformed into “invisible” energy.
Indicate which mechanisms are responsible for the production of invisible energy
and discuss at least one method to recover it.

Discussion

The physics of hadronic cascades is by far more involved compared to the develop-
ment of electromagnetic showers due to the richness of interactions that hadronic
particles undergo when crossing matter. The interaction of a high-energy hadron
with a typical calorimetric material, like iron, lead, or copper, involves the produc-
tion of energetic secondary hadrons through strong interactions with typical inter-
action lengths of about 35 A1/3 g cm−2, followed by the degradation of their energy
by nuclear reactions that produce nuclear excitation, evaporation, spallation, fission,
etc., resulting in particles with characteristic nuclear energy (100 keV÷a few MeV).
The low energy spectrum of the hadronic cascade is dominated by neutrons, photons,
electrons and positrons, the latter produced by the interaction of photons with matter.
Photons are produced by two main mechanisms: from π0 → γ γ and from nuclear
de-excitations and (n, γ ) reactions. The latter can come delayed up to 1 µs with
respect to the primary interaction, and overall account for about 30% of the total
cascade energy. Since the number of high-energy interactions that produce pions
increases with energy, the fraction of energy drained away in the form of π0 → γ γ

photons increases with energy. The hadronic shower in usually initiated inside the
so-called radiator, whereas the energy measurement is performed in the active mate-
rial that samples the cascade. Both the hadronic and electromagnetic component of
the cascade contribute to the energy measurement in the active material, although
with different efficiencies. Let ηe (ηh) be the efficiency of detecting the energy con-
tained in the electromagnetic (hadronic) component. The total energy measured by
the interaction of a high-energy hadron with initial energy E is therefore given by:

Eh
vis = [ηe Fπ0(E) + ηh Fh(E)] E = ηe

[
1 +

(
1 − ηh

ηe

)
Fh(E)

]
E, (2.99)

where Fh = 1 − Fe is the hadronic energy fraction, which depends on the initial
hadron energy [20]. The ratio between the response to an hadron h and to an elec-
tromagnetic particle, like an electron, is therefore:

Eh
vis

Ee
vis

≡
( e

π

)−1 = 1 +
(

1 − ηh

ηe

)
Fh(E). (2.100)
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Since ηh �= ηe in general, and because of the dependence of Fh with energy,
Eq. (2.100) implies that

• the energy response of a hadronic calorimeter is in general non-linear;
• the energy resolution is worse than for an electromagnetic calorimeter due to the

stochastic fluctuations on Fh ;
• the energy response is not gaussian.

For example, in a homogeneous calorimeter, e/π ≈ 1.4 as a result of the lower
efficiency of detecting the hadronic component. This problem can be greatly miti-
gated by tuning the ratio ηh/ηe to unity, i.e. by compensating the calorimeter for the
intrinsically different response to the hadronic component.

Solution

The origin of invisible energy in hadronic cascades can be tracked down to the
production of delayed photons, soft neutrons that undergo nuclear reactions giving
low-range particles, and to the production of nuclear binding energy, which is again
drained away in the form of low-range nuclear decays. Although such energy is not
measurable, it is possible to compensate for it in a statistical sense by decreasing the
sensitivity of the detector to the electromagnetic component. For example, in a sam-
pling calorimeter made of high-Z material like brass, uranium, or lead, interleaved
with a plastic organic scintillator, the response to the electromagnetic cascade gets
reduced proportionally to the sampling fraction, i.e. the fraction of active material.
The latter can be tuned by varying the thickness of the scintillator layers. On the con-
trary, the response of the scintillator to fast neutrons is only marginally affected, since
a recoil proton with T ∼ 1 MeV has a range of a few tens of microns, see Eq. (2.35),
hence it will always interact in the active material regardless of its thickness. By
tuning the e/π ratio to unity, the energy resolution can be grearly enhanced.

Suggested Readings

The review article [20] gives a concise but clear discussion of the phenomenology
of hadron cascades, with quantitative description of compensation in real detectors.

Bando n. 18211/2016

Problem 2.36 Which processes among pair-production, Compton scattering, and
photoelectric effect, are non-negligible in the interaction of γ emitted by a 60Co
source with a Ge detector? Which process has necessarily to happen in order to
measure the total photon energy?

Discussion

Thanks to the large Z value and the small excitation energy, see Table 2.2, Ge detec-
tors place among the most precise detectors for γ spectroscopy below a few MeV.
When dealing with γ radiation, an important property of the detector is the photo-
peak efficiency, i.e. the efficiency of detecting a photon which is entirely absorbed
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by photoelectric effect. For Ge detectors and photons of order 1 MeV energy, the
photo-peak efficiency is � 1%, see e.g. Fig. 10.20 of Ref. [1].

Solution

In its β-decay chain, the 60Co isotope produces two monochromatic photon lines
of energy 1.17 and 1.33 MeV, hence just above the pair-production threshold Eth =
2me ≈ 1.02 MeV. The K -shell for Ge is located at 11 keV [9], hence the photoelectric
effect is expected to be small for the 60Co photons, while Compton scattering should
be the dominant interaction mechanism. Indeed, from Ref. [6], we find σp.e. ≈ 5 ×
10−2 barn, σComp ≈ 6 barn, and σpair ≈ 10−2 barn for Eγ = 1.25 MeV. If the photon
undergoes Compton scattering, only the energy deposited by the recoil electron can
be measured by the detector. The interaction length for photons in Ge is given by:

λComp = (n σComp)
−1 =

(
5.3 g cm−3 · 6 × 1023 mol−1

72 g mol−1 · 6 barn

)−1

≈ 4 cm,

(2.101)

so there is a finite probability that the photon undergoes one Compton scattering only
before leaving the active volume, if the latter is a a few mm thick, like in practical
Ge detectors. The maximum electron recoil energy is given by Eq. (1.139), namely:

Tmax = Eγ

2 k

1 + 2 k
= 0.96, 1.1 MeV, (2.102)

where k = Eγ /me. For example, the range in Ge for an electron of kinetic energy
1.1 MeV is about 1.2 mm [5], hence there is a non-negligible chance that the recoil
electron escapes the active volume. The same holds for the photoelectrons, which
have energies Eγ − B ≈ 1.16 and 1.32 MeV, and ranges below 2 mm.

The only reactions that guarantee a full energy measurement are therefore the
photoelectric effect (probability ≈1%), with full electron confinement, and pair-
production (probability ≈ 0.2%). In the latter case, the emitted e± have an energy of
about (Eγ − 2me)/2 ≈ 75 and 150 keV and ranges of about 25 and 85 µm, respec-
tively, and are therefore very likely to be fully contained in the active volume. After
annihilation with an atomic electron, the 2me rest energy of the e+e− pair restores the
full energy measurement if the two photons from positronium annihilation interact
with the active material (the interaction length for 0.5 MeV photons is about 2.4 cm).

Bando n. 18211/2016

Problem 2.37 Estimate the contribution to the energy resolution (FWHM) due to
the stochastic fluctuations in silicon calorimeters generated by photons of energy
2 keV, 6 keV, and 15 keV.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Discussion

If the measured energy E is distributed according to a Gaussian law with mean μ = 0
and standard deviation σ , the FWHM resolution is defined as the interval such that
the p.d.f equals half of its value at the mean position μ, i.e.:

N (x±; μ, σ) = 1

2
N (0; μ, σ) ⇒ x± = ±√

2 ln 2 σ ≈ ±1.177 σ

σFWHM = (x+ − x−) = 2.35 σ (2.103)

When dealing with energy resolution with particle detectors, an important concept
is the so-called Fano factor (F). If a particle produces on average N = E/ε signal
carriers through independent random interactions characterised by probability p, the
stochastic fluctuation in this number is

√
N from Poisson statistics, and the relative

energy resolution is 1/
√

N . However, if the detector cannot but absorb all of the
particle energy by converting it into detectable signal carriers, the multiplicity of the
latter is ideally fixed to N and there would be no stochastic fluctuations at all. This
is seldom the case, since there is in general a partioning of the energy transferred
by the particle to the active material into more channels, some of which may not
produce signal carriers. Indeed, in some circumstances it is observed that the relative
energy variance is smaller than the Poisson expectation by an empirical factor F ,
with F < 1, i.e.:

σ

E
=

√
F ε

E
(2.104)

Semiconductors that absorb the full particle energy into eh-pairs, feature a Fano
factor of about 0.12. The Fano factor for ionisation detectors has been discussed in
Problem 2.8. More informations can be found in Chap. 4 of Ref. [7].

Solution

At energies below 15 keV, the photoelectric effect dominates the interaction of pho-
tons with silicon, see e.g. Ref. [6]. We can therefore assume that the photon interacts
with one atom by emitting an electron of a few keV energy. The photo-produced elec-
tron loses energy by collision loss and creates additional electon-hole pairs along its
track. At E = 2 keV, the photoelectron will most likely originate from a K -shell
emission. Since the K -edge in silicon is at 1839 eV [9], the resulting photo-electron
will be rather soft as for Eq. (2.23). However, the ionised atom is in an excited state,
which will bring to the emission of either K -α and K -β photons, which undergo
photoelectric effect from L-shells with the emission of secondary photoelectrons,
or to the emission of short-range Auger electrons [5]. In any case, the secondary
particles will release energy in the active medium, so that one can still assume that
the whole photon energy is absorbed with little energy partitioning. This reduces
the standard deviation of the number of electron-hole pairs Neh from the Poisson
expectation of 1/

√
Neh to

√
F/Neh , with F ≈ 0.12 for silicon. The mean excitation
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energy is ε = 3.6 eV, see Table 2.2. We can therefore estimate the FWHM of the
measured signal to be:

σFWHM = 2.35

√
Fε

E
= 2.35

√
0.12 · 3.6 eV

E
=

⎧⎪⎨
⎪⎩

3.4% E = 2 keV

2.0% E = 6 keV

1.3% E = 15 keV

(2.105)

Suggested Readings

Reference [21] discusses in more detail the use of silicon detectors for γ spectroscopy,
with examples of measured spectra from nuclear candles. A broader discussion on
the phenomenology of photoelectric absorption in matter can be found in Ref. [7].

Bando n. 1N/R3/SUB/2005

Problem 2.38 A piece of Na I (Tl) scintillator, read-out by a phototube, is used to
measure the 137Cs line: estimate the energy resolution by listing the contributing
factors.

Solution

The energy resolution for a coupled scintillator-phototube detector is described by
Eq. (2.45). The 137Cs isotope produces a monochromatic X-ray emission with energy
E = 661 keV. The main contribution to the energy resolution comes from the sta-
tistics of photoelectrons, which depends on the mean number of photons nγ = E/ε,
where ε is the mean excitation energy, see Table 2.2, and on the overall efficiency of
the photocathode. The electronic noise plays also an important role. An other contri-
bution may come from the dependence of the response with the photon impact point
and from an imperfect shower containment. Assuming εQ εC = 0.2 for a typical
PMT, see e.g. Table 34.2 of Ref. [2], and negligible noise from the electronics and
amplification statistics ( fN = 1, G  1), the relative energy resolution (FWHM)
can be estimated to be:

σFWHM

E
= 2.35

√
ε

E · εQεC
= 2.35

√
22 eV

661 keV · 0.2
= 3.0%, (2.106)

see Problem 2.37. No Fano factor has been accounted for in Eq. (2.106), since there
is no evidence for its presence in scintillators.

Bando n. 5N/R3/TEC/2005

Problem 2.39 Estimate the energy resolution at 140 keV of a photo-detector
equipped with Na I (Tl) crystals.
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Solution

We can refer to Problem 2.38 for determining the energy resolution of a similar setup.
Assuming εQ εC = 0.2 for a typical PMT and negligible noise from the electronics
and amplification statistics, the relative energy resolution (FWHM) can be estimated
to be:

σFWHM

E
= 2.35

√
ε

E · εQ εC
= 2.35

√
22 eV

140 keV · 0.2
= 6.6%, (2.107)

where ε = 22 eV is the mean excitation energy for Na I (Tl), see Table 2.2. See
Problem 2.37 for the definition of FWHM.

Bando n. 18211/2016

Problem 2.40 A scintillator emits 104 γ /MeV. Calculate the resolution (FWHM)
for a 4 MeV particle assuming a total light collection efficiency εC εQ=1.

Solution

The energy resolution of the detector is described by Eq. (2.45). Assuming εQ εC = 1
and negligible noise from the electronics and amplification statistics, the relative
energy resolution (FWHM) can be estimated to be:

σFWHM

E
= 2.35

√
ε

E
= 2.35

√
10−4 MeV

4 MeV
= 1.2%. (2.108)

See Problem 2.37 for the definition of FWHM.

Bando n. 13153/2009

Problem 2.41 Calculate the energy resolution for photons of energy E measured
by a solid state detector with ionisation energy ε, leakage current Id, and integration
time of the associated electronics equal to TS.

Solution

If the photon energy is intirely absorbed by the detector, the mean signal charge Q
collected at the electrodes of the p-n junction and its standard deviation are given
respectively by:

Q = E

ε
e, σQ =

√
F E

ε
e, (2.109)
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where F ≈ 0.12 is the Fano factor in silicon. In the integration time TS taken by the
electronics to shape the signal, the leakage current contributes to the noise via an
equivalent squared-charge:

Q2
n = 2 e Id TS, (2.110)

see e.g. Sect. 34.8 of Ref. [2]. Since the noise from the leakage current and the
statistical fluctuation in the number of signal carriers are uncorrelated, the relative
energy resolution is given by the sum in quadrature:

σE

E
=

√
σ 2

Q + Q2
n

Q
=

√
ε

E

√
F +

(
2 Id TS

e

)
ε

E
(2.111)

Suggested Readings

For a concise overview of low-noise front-end electronics for particle detectors, the
reader is addressed to Sect. 34.8 of Ref. [2].

Bando n. 1N/R3/SUB/2005

Problem 2.42 The drift velocity of electrons in some gas mixture is v = 5 cm/µs.
What does it imply for a multiwire chamber with wire spacing s = 2 mm, and what
for a drfit chamber read-out by a TDC with 500 MHz clock?

Discussion

Multiwire chambers have been briefly discussed in Problem 2.52. Drift tubes (DT)
are gaseous ionisation detectors that measure the time taken by the primary ionisation
electrons to drift from their point of formation up to the anode. For ions moving in
a gas, the drift velocity v is roughly proportional to the electric field intensity:

v = μ E, (2.112)

where μ is called mobility and depends on the pressure P and temperature T of the
gas, while it is almost independent of the electric field. Electrons can instead reach
much higher velocities compared to ions, and the mobility μ depends on E in such
a way that a saturation of the velocity at values of order 50 µm/ns is reached for
E ∼ 1 kV/cm at STP. By making the electric field as uniform as possible in the drift
region, Eq. 2.112 implies a proportionality between the distance from the anode of
the primary ionisation position and the drift time. The latter is defined as the time
interval between a fast trigger, that provides the start time to the clock, and the time
of formation of the electric signal at the anode. Drift tubes are built according to this
concept. Typical position resolutions achievable with DT are 100 µm over few drift
lengths d of a few cm. The position resolution is determined by the sum in quadrature
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Fig. 2.10 Typical position
resolutions in a drift chamber
as a function of the drift
length d. The total resolution
is broken up into three main
contributions: statistics of
the primary ionisation, noise
from the electronics, and
charge diffusion
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of three dominant contributions: the statistics of primary ionisation (relevant at small
d), the electronic noise (independent from d), and electron diffusion (proportional
to

√
d). Figure 2.10 provides a qualitative description of the position resolution as a

function of the drift length d.

Solution

A MWPC with wire spacing s = 2 mm, has a spatial resolution along the coordinate
y orthogonal to the wires:

σ MW
y = s√

12
= 2 mm√

12
≈ 580 µm. (2.113)

The factor
√

12 accounts for the fact that the particles arrive at the detector uniformly
distributed across y. The time resolution is therefore given by

σ MW
t = σ MW

y /2

v
= 580 µm/2

5 cm/µs
≈ 5.8 ns (2.114)

In Eq. (2.114), the factor of 1/2 at the numerators comes from the fact that a primary
ionisation generated outside of the ±s/2 range from a given wire will be detected by
one of the two neighbouring wires. For a DT readout by a time-to-digital converter
(TDC), the TDC clock period f −1 sets a minimum time resolution

σ DT
t = f −1

√
12

= 2 ns√
12

= 0.58 ns. (2.115)

Again, one has to divide by
√

12 since the actual arrival time at the anode is uniformly
distributed across the time interval f −1 between subsequent clocks. The position
uncertainty induced by the TDC clock is therefore given by:

σ DT
y, clock = σ DT

t · v = 0.58 ns · 5 cm/µs ≈ 29 µm. (2.116)
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This term contributes to the electronic noise shown in Fig. 2.10. The overall position
resolution depends however on other factors, as discussed above. Typical position
resolutions of a conventional DT is about 100 µm, which is anyway smaller than the
one from a typical MWPC.

Suggested Readings

For a comprehensive review of DT, the reader is addressed to Ref. [22].

Bando n. 1N/R3/SUB/2005

Problem 2.43 A depleted microstrip silicon detector has a strip pitch of 50 µm and
operates without charge division. What is its spatial resolution?

Discussion

A silicon microstrip is a solid-state detector consisting of a wafer of doped silicon,
for example, of a high-resistivity n-type with typical thickness of about 300 µm,
with p-n junctions shaped in the form of long and thin parallel strips separated by a
distance (pitch) ranging between 20 and 200 µm. In a possible setup, one surface of
the wafer is grounded and the strips are implanted on the opposite side and connected
to the bias voltage via DC or AC coupling. The junction may be realised by p+-type
silicon and, for a typical wafer thickness, it gets completely depleted by a bias voltage
of order 100 V. A MIP loses 1.66 · 2.33 MeV/cm ≈ 3.87 MeV/cm in silicon [5].
Given that the average excitation energy is ε = 3.6 eV, a total of 3×104 eh-pairs are
produced on average across a 300 µm-thick junction. The signal carriers drift under
the effect of the bias voltage and the induced charge is measured by the front-end
electronics.

The charge division method consists in an analog measurement of the signal from
the strips close to the one which recorded the hit, i.e. the one with the largest signal
yield. The centre-of-mass of the strip charges x̄ = ∑

i Qi xi/
∑

i Qi , where i runs
over the strips and xi (Qi ) are the strip positions (measured signal), provides an
estimator of the impact position with typical resolution of about

σ ana
x ∼ d

SNR
, (2.117)

where d is the strip pitch and SNR is the signal-over-noise ratio. This can be easily
proved by using the standard propagation of error for uncorrelated measurements,
see Eq. (4.73):

x̄ =
∑

i Qi xi∑
i Qi

⇒ σ 2
x̄ =

∑
j

∣∣∣∣ ∂ x̄

∂ Q j

∣∣∣∣
2
δQ2

j =
∑

j

(
x j − x̄

)2

(∑
i Qi

)2 δQ2
j = d2

∑
j δQ2

j(∑
j Q j

)2 ,

σx̄ = d

SNR
, with SNR =

∑
j Q j√∑
j δQ2

j

≡ S

N
. (2.118)

http://dx.doi.org/10.1007/978-3-319-70494-4_4
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Conversely, if the strips can be read in digital mode only, the position resolution is
given by the strip pitch:

σ dig
x = d√

12
, (2.119)

Additional sources of uncertainty affecting the collection of charge carriers, like
thermal diffusion, multiple-scattering, δ-rays, should be also considered for realistic
detectors.

Solution

In the absence of charge division, the spatial resolution of a microstrip detector is
primarily determined by the pitch size d. Since the particle flux can be asumed to
be uniformly distributed across the microstrip detectors, we can estimate the spatial
resolution (FWHM) as:

σ x
FWHM = 2.35

d√
12

= 34 µm, (2.120)

where the factor of 1/
√

12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a first introduction to microstrip detectors, the reader is addressed to Sect. 10.6
of Ref. [1].

Bando n. 18211/2016

Problem 2.44 A silicon detector is made of a pixels with dimension 100 µm ×
200 µm. What is the smallest spatial resolution in the two dimensions, if the detector
has digital readout?

Discussion

Pixel detectors are semiconductive detectors where the active volume is segmented
in small picture elements (pixels), which are independently read-out. Planar pixel
detectors are commonly employed in HEP experiments as vertex detectors, thanks
to their superior spatial resolutions in two dimensions, which allows for a small
occupancy even at the closest distance to the interaction point, and their close-to-
ideal efficiency to detect the passage of ionising particles.

Solution

If the detector is operated in digital readout, see Problem 2.43, a lower bound to the
spatial resolution (FWHM) in the two directions is given by:



2.3 Functioning of Particle Detectors 165

{
σ x

FWHM = 2.35 dx√
12

= 68 µm

σ
y

FWHM = 2.35 dy√
12

= 136 µm
(2.121)

where the factor of 1/
√

12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a comprehesive introduction to pixel detectors in HEP experiments, the reader
is addressed to Ref. [21].

Bando n. 18211/2016

Problem 2.45 Why is a diode used as radiation detector usually operated with an
inverse bias?

Solution

A p-n junction operated at inverse bias give rise to an active region depleted from
mobile charge where an intense electric field can sweep out free charges liberated
by a ionising particle. The thickness of the depletion zone for the case of a silicon
p-n junction realised by a p+-doped material put into contact with a lightly doped n
region, is approximately given by:

W = 0.5

√( ρn

Ω cm

)(
V0 + Vbias

V

)
µm, (2.122)

where ρn is the resistivity of the n-type region, V0 ∼ 1 V is the barrier voltage, and
Vbias is the bias voltage, see e.g. Ref. [2]. The importance of applying an inverse
bias to the junction as to enlarge the active volume is made clear by Eq. (2.122). For
example, for typical values ρn = 2×104 Ω cm, the thickness of the depletion region
would change from 70 to 700 µm, if a reverse bias Vbias = 100 V is applied.

Suggested Readings

An introduction to the physics of semiconductors for particle detectors can be found
in Chap. 20 of Ref. [1].

Bando n. 13705/2010

Problem 2.46 Consider a D0 meson produced with an energy of 20 GeV. Determine
the spatial resolution necessary to measure the production and decay vertex position,
and indicate which detectors are best suited for an efficiency exceeding 90%.
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Solution

The D0 meson decays via the electroweak interaction with a lifetime of about 0.41 ps,
corresponding to cτ ≈ 120 µm [2]. A good channel to reconstruct its decay is
D0 → K ±π∓. The probability of surviving up to a distance d ot more from its
production vertex is given by Eq. (1.174):

P [x ≥ d] = exp

[
−mc

|p|
d

cτ

]
= exp

[
− 1√

γ 2 − 1

d

cτ

]
(2.123)

Requiring this probability to be at least 90% is equivalent to impose that the flight
distance should be in excess of:

d90% = (− ln 0.9) c τ γ = (0.105 · 123 · 11) µm ≈ 140 µm, (2.124)

where we have used the fact that γ ≈ 11 is large. Therefore, if we want to reconstruct
at least 90% of the D0 decays from their decay vertex, the vertex resolution must
be smaller than about 140 µm. This can be easily achieved by silicon-based vertex
detectors, either pixel- or mictrostrip-based.

Discussion

For E = 20 GeV, the decay products have energy of about 10 GeV each. In this
regime, multiple scattering usually dominates the tracking resolution when using
silicon detectors with pixel/pitch size � 100 µm, see Problem 3.9. The impact point
resolution (σip) is the uncertainty on the position of closest approach of the track
extrapolation to the primary vertex point (PV), and is related to the resolution on the
position of the secondary vertex (SV), see Fig. 2.11. Modulo resolution effects, the
quantity

s j
ip = sign

[
ip j · (SV − PV)

]
(2.125)

should be positive for tracks emerging from the same secondary vertex. Conversely,
the detector rsolution smears the impact point of tracks emerging from the PV around
zero, with equally likely values of sip. This property can be exploited to define
tagging algorithms for displaced vertexes and experimental methods to measure
their efficiency in data [24, 25]. Assuming a MS-dominated regime, the impact point
resolution is given by:

σip ≈ r1

√
〈θ2

1 〉, (2.126)

where r1 is the distance of the innermost silicon layer from the interaction point
and 〈θ2

1 〉 is given by Eq. (2.8). For example, assuming the design of the CMS pixel
detector, one has r1 = 4.4 cm and a MS mean angle of about 2 × 10−4 rad at |p| =
10 GeV, giving σip ≈ 10 µm, see Ref. [26]. A more realistic simulation, which

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_3
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Fig. 2.11 Cartoon
illustrating the two-body
decay of a D0 meson. The
distance of closest approach
of the extrapolation of the
daughter particles
trajectories to the primary
vertex (PV) is called impact
parameter

pπ

pK

ipK

ipπ

d

PV

SV

includes measurement uncertainty and MS in the beam pipe, gives about a factor of
2 larger resolution, which still satisfies the constraint of Eq. (2.124).

Suggested Readings

For an overview of tracking and vertexing performances at the LHC, the reader is
recommended to read the review article [26].

Bando n. 18211/2016

Problem 2.47 Explain why Ge sensors need to be cooled, while Si sensors do not.

Solution

Germanium detectors are commonly operated at liquid nitrogen temperature (T =
77 K) to reduce the leakage current Id due to thermal excitation, and hence the
electronic noise and power consumption, see Problem 2.41). The bias current depends
exponentially on the temperature T :

Id(T ) ∝ T 2 exp

[
− Egap

2 kB T

]
⇒ Id(T2)

Id(T1)
=

(
T2

T1

)2

exp

[
− Egap

2 kB

(
1

T2
− 1

T1

)]
,

(2.127)

where Egap is the energy gap, see e.g. Sect. 34.7 of Ref. [2]. Although the same effect
exists in silicon, the energy gap in the latter is larger than in germanium. For example,
at room temperature, one has Egap = 1.1 eV for silicon and 0.7 eV for germanium,
corresponding to a factor of 3 × 103 larger leakage current for the latter.

Bando n. 18211/2016

Problem 2.48 Which property of a SiPM makes it a preferable solution cimpared
to a conventional PMT for an integrated imaging PET-MRI system?
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Discussion

Silicon photomultipliers (SiPM), also known as Pixelized Photon Detectors (PPD)
are photodetectors composed by an array of pixel-size photodiodes with typical size
ranging from 25 × 25 µm2 to 100 × 100 µm2, packed over a small area, typically
from 0.5 × 0.5 mm2 to 5 × 5 mm2, and operated in Geiger mode, i.e. with a bias
voltage in excess of the break-down voltage. When a eh-pair is created in the depleted
region, the intense electric field triggers the formation of an avalanche. The high bias
voltage provides large gains per incident photon and per pixel, but proportionality
between the number of photons impinging on a given cell and the collected charge
is lost. The proportionality with the total input photons is restored by summing the
binary cell outputs from the full array.

Solution

SiPM’s represent a convenient alternative to PMT’s for applications in environment
with intense magnetic field, like in positron emission tomography-magnetic reso-
nance imaging (PET-MRI) applications, since the amplification stage in a SiPM
does not require the photoelectrons to be accelerated along the dynode of conven-
tional PMT’s, which suffers from the presence of magnetic fields, for example by
altering the gain.

Suggested Readings

For an introduction to SiPM’s, the reader is addressed to the dedicated PDG review [2]
and references therein.

Bando n. 1N/R3/SUB/2005

Problem 2.49 Order the following detectors by decreasing dead time: silicon, plastic
scintillator, drift chamber. Which one would you chose for a time measurement with
resolution of a few hundred ps?

Discussion

The dead time τ is the time required by a detector to process one event and be ready
to accept a new event. Depending whether the detector is sensitive or not to a new
event while processing the previous one, two types of dead-time exist: extendable or
not-extendable. In the first case, if we assume that the first event occurred at time t0,
the arrival of a new event at a time t1 < t0 + τ shifts the time at which the detector
is ready to accept and process a new event to at least t2 = t1 + τ . In the second case,
the new event does not change the detector state at all, and the subsequent event
can be accepted and processed at any time t1 ≥ t0 + τ , regardless of what happens
meanwhile. See Problem 3.38 for more details.

Solution

Plastic scintillators are generally faster than inorganic scintillators, with decay times
of a few ns, see e.g. Table 7.1 of Ref. [1]. Fast photodetectors can also have risetimes

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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below 1 ns, see e.g. Ref. [2]. A coupled scintillator-photodetector system is ready to
accept and process a new event after the fluorescent excitation from the previous event
have decayed to the ground level, which can take about 10 ns for fast scintillators.

A silicon strip or pixel detector has time resolutions of a few ns, but the time
needed to collect the full charge released in the depleted zone can take a few tens of
nanoseconds (10 ns for electrons and 25 ns for holes in a 300 µm thich detector, see
Sect. 34.7 of Ref. [2]). The readout electronics further increases the processing time
to at least 50 ns.

In a drift chamber, the dead time is mostly due to the time taken by the primary
ionisation electrons (ions) to drift to the anode (cathode), see Problem 2.42. For a
typical electron velocity of 5 cm/µs, the time needed to drift over 1 cm is about
200 ns. During this time, a new event would cause pile-up and confusion on the time
measurement.

A time measurement with a few hundreds ps time resolution is best accommodated
with plastic scintillators coupled to fast photo multipliers, like microchannel plate
(MCP) or gas electron multipliers (GEM), with a fast sampling frequency of the
readout electronics as to allow for the full pulse shape reconstruction.

Suggested Readings

More details on the dead time of particle detectors, including techniques for measur-
ing it in the laboratory, can be found in Sect. 5.7 of Ref. [1]. Table 34.1 of Ref. [2]
summarises the typical resolutions and dead times of common charged particle detec-
tors.

Bando n. 18211/2016

Problem 2.50 The mean counting rate on single electrode for a given detector is
150 kHz. Estimate an upper bound to the processing time of the analog pre-amplifier
and shaper, if the pile-up probability has to be maintained below 3%.

Solution

For what concerns the pileup of multiple events, we can use the same line of
thought used to relate the true and measured rate in a non-paralyzable system, see
Problems. 2.49 and 3.38. Referring to Eq. (3.186) with ε = 1, we can therefore invert
the equation and express the true rate ν as a function of the measured rate m and of
the dead time τ , i.e.

ν = m

1 − m τ
. (2.128)

Requiring that the pile-up is less than δ = 3% amounts to require that the ratio
between the measured rate and the true rate is larger than 1 − δ, or equivalently:

http://dx.doi.org/10.1007/978-3-319-70494-4_3
http://dx.doi.org/10.1007/978-3-319-70494-4_3
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m

ν
= 1 − m τ > 1 − δ ⇒ τ <

δ

m
= 0.03

1.5 × 105 Hz
= 200 ns. (2.129)

Bando n. 18211/2016

Problem 2.51 A proportional cylindrical tube has inner radius R, wire radius r , and
anodic tension V0. What is the value of the electric field at a distance d ≤ R from
the anode?

Solution

Let’s assume that the anode is connected to a potential V0 > 0 and that the cathode
is grounded. The wire acquires a charge with uniform linear density. By using the
cylindrical symmetry of this configuration, it is easy to prove that the electric field
must be radial, i.e. E = E(d) er . By virtue of Gauss law, the field intensity E(r)

must scale as d−1, i.e.

E(d) = c0

d
, (2.130)

where c0 is a constant that depends on the boundary conditions. Since E = −∇V ,
the electric potential V (d) must be proportional to ln d. Together with the boundary
conditions at the two electrodes, this fully determines the potential to be:

V (d) = V0

ln(r/R)
ln(d/R), (2.131)

from which we get the result:

E(d) = −∂V

∂d
= V0

ln(R/r)

1

d
. (2.132)

Discussion

The d−1 scaling of the electric field makes the cylindrical tube suitable for charge mul-
tiplication. For example, assuming typical values r = 20 µm, R = 5 cm, V0 = 2 kV,
the electric field at a distance of 100 µm from the wire is about 20 kV/cm, which is
enough to trigger the formation of an avalanche with its resulting charge multiplica-
tion. As an eample, the gas multiplication factor M for a cylindrical chamber filled
with P-10 gas (90% Ar, 10% C H4) at STP can be estimated from Diethorn formula:

ln M = V0

ln(R/r)

ln 2

ΔV
ln

(
V0

p r ln(R/r) K

)
≈ 7.3 ⇒ M = 1.5 × 103,

(2.133)

where p is the gas pressure and K and ΔV are gas-specific parameters, see e.g.
Table 6.1 of Ref. [7] for a few examples.
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Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Ref. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. 1N/R3/SUB/2005

Problem 2.52 The cathode readout can be used in wire detectors, like multiwire
chambers, TPC, LST, and even RPC. What does it mean? What are the main advan-
tages of this setup?

Discussion

Multiwire proportional chambers (MWPC), time projection chambers (TPC), lim-
ited streamer tubes (LST), and resistive plate chambers (RPC) are all examples of
gaseous ionisation detectors that measure the ionisation charge left behind by parti-
cles interacting with the gas. A gaseous detector consists in a pair of electrodes kept
at different electrostatic potentials and separated by a gaseous medium. The anode
is usually shaped in a way as to produce intense electric fields nearby its surface. A
metallic wire kept at a positive voltage bias is the solution at the basis of the MWPC,
TPC, and LST technology. A plane capacitor with small inter-plane distance is an
other option, which is e.g. used in RPC detectors. The cathode confines the elec-
tric field and shields the detector from the outside. The usual way of opertaing a
gaseous detector is to ground the cathode and read the anode in AC-coupling, i.e.
separating the bias voltage from the readout electronics by means of a capacitor, see
Problem 2.53. Alternatively, one can set the cathode at a negative bias voltage, and
couple the anode directly to the readout electronics.

Solution

Let’s consider the case where the anode consists in a set of parallel wire with small
inter-distance, stretched along the coordinate x , and let y be the orthogonal coordi-
nate. The passage of a ionising particle induces the formation of an electron avalanche
in the neighbourhood of the anode. The positive ions drift towards the cathode induc-
ing a signal (a time-dependent voltage pulse) between the two electrodes. If the detec-
tor is operated in anode readout, only the y coordinate can be measured with good
resolution. If the cathode is segmented along y, like in the form of parallel strips,
then a cathode readout, i.e. a measurement of the pulse induced at the cathode, offers
the possibility of measuring also the x coordinate. If the cathode readout is analogic,
a centre-of-gravity method allows to measure the x position with high precision
(indeed, only limited by the noise of the electronics). If the readout is digital-only,
the x resolution is instead determined by the granularity of the cathode.

Suggested Readings

An introduction to gaseous detectors and to their readout can be found in Sect. 6.6
of Ref. [1]. A more advanced and complete reference on the subject is provided by
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Fig. 2.12 AC and DC
couplings for a generic
detector

V0

R

detector
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Ref. [8]. A stimulating discussion on this subject can be also found in the Nobel
lecture by G. Charpak (1992), the inventor of the MWPC.

Bando n. 18211/2016

Problem 2.53 Does a radiation detector AC-coupled to its electronics have a larger
noise compared to a DC-coupled detector with the same electronics?

Discussion

The readout electrode of a charge-sensitive detector, like a microstrip silicon detector,
an RPC, a MWPC, etc., can be either set to a large bias voltage or be grounded. In
the former case, the front-end electronics, which usually starts with a pre-amplifier,
needs to be decoupled from the bias voltage by a capacitance (AC-coupling). In the
latter case, the electrode can be directly accessed by the pre-amplifier (DC-coupling),
see Fig. 2.12.

Solution

AC-coupling offers the advantage of having the opposite electrode (e.g. the cathode,
for wire detectors) grounded, resulting in a convenient configuration to insulate the
detector. However, it provides an extra decoupling capacitance in input to the readout
chain, thus increasing the electronic noise compared to a DC-coupling. Indeed, for
a capacitive sensor, the charge-equivalent noise Qn can be parametrised as:

Q2
n = i2

n Fi TS +
(

e2
n Fv

TS
+ Fv f A f

)
C2, (2.134)

where C is the sum of all capacitances shunting the input, i2
n and e2

n are the quadratic
current and voltage noise densities, TS is the characteristic shaping time, and Fi,v,v f

are devise-specific constants [2].
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Suggested Readings

For an introductory discussion on the readout of silicon detectors, the reader is
addressed to Sect. 10.9 of Ref. [1]. More details on low-noise electronics for capac-
itive detectors can be found in the dedicated PDG review [2].

Bando n. 1N/R3/SUB/2005

Problem 2.54 A discriminator is operated with a threshold Vth = 0.4 V and receives
in input signals that have a constant rise-time equal to TS = 10 ns, but an amplitude
variation between Vmin = 0.5 V and Vmax = 1 V. Estimate the lower bound on the
time resolution due to the variable amplitude. Which technique would you use to
reduce such an effect?

Discussion

A discriminator is a device that produces a digital signal when an analogical input
pulse overcomes a predefined threshold. A discriminator in combination with a TDC
device can be used for timing measurements of signals. When the input signals differ
in amplitude and/or rise-times, the time measurement performed by a discriminator
with fixed threshold is affected by event-by-event fluctuations on the pulse shape,
giving rise to the so-called time walk. A number of time-pickoff methods can be
deployed to mitigate the walk effect. A common method is based on the constant
fraction triggering (CFT), which consists in analysing the zero-crossing of a signal
obtained by a linear combination of the pulse V , delayed by a fixed time τd, with
−k V , where k is an attenuation coefficient. The triggering time tR is defined as the
time at which:

V (tR − τD) − k V (tR) = 0. (2.135)

Since Eq. (2.135) is homogeneous in V , signals with the same time-shape, but dif-
ferent amplitude, will give the same triggering time tr, see Fig. 2.13. This method is
however affected by a residual walk effect if the pulse shape differ from one event to
another. In this case, one can try to reduce the delay time τD as to trigger on the rising
edge of the signals, where event-by-event changes are smaller, a technique known
as amplitude and risetime compensation (ARC).

Solution

The time derivative of the signal is distributed in the range

dV

dt
∈

[
Vmin

TS
,

Vmax

TS

]
= [0.05, 0.1] V

ns
. (2.136)

Signals with time derivatives at the edge of the interval of Eq. (2.136) will trigger
the disciminator at times:
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Fig. 2.13 Application of the
CFT technique to a pair of
Gaussian-like signals with
different amplitude

tmin = Vth

Vmax/TS
= 0.4 V

0.1 V/ns
= 4 ns

tmax = Vth

Vmin/TS
= 0.4 V

0.05 V/ns
= 8 ns (2.137)

The time walk Δt is therefore given by

Δt = tmax − tmin = 4 ns. (2.138)

A technique to eliminate the time walk is for example the constant fraction trig-
gering, which is appropriate for this case since the signals feature the same rise-time.

Suggested Readings

Discriminators are briefly discussed in Sect. 14.0 of Ref. [1], while a few time-
pickoff methods are described in Sect. 17.2 of the same reference. The reader is also
addressed to Ref. [23] for application of discriminators in experiments.

Appendix 1

The computer program below illustrates the numerical evaluation of the information
Iεπ

from Problem 2.28. The algorithm approximates the Rieman integral by the finite
sum of rectangles:

∫
dx f (x) ≈

∑
i

f

(
xi+1 − xi

2

)
· Δx
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The integral to be approximated is given by:

Iεπ
= E

[
−∂2 f (x, επ )

∂2επ

]
≡

∫ +∞

−∞
dt f (t, επ )

[
−∂2 ln f (x, επ )

∂2επ

]
, (2.139)

with:

∂ ln f (x, επ )

∂επ

= N (t; tπ , σt ) − N (t; tK , σt )

f (t, επ )
(2.140)

∂2 ln f (x, επ )

∂2επ

= − [N (t; tπ , σt ) − N (t; tK , σt )]
2

f (t, επ )2
(2.141)

import math

# gaussian function
def gaus(x, m, s):

return 1./math.sqrt(2*math.pi)/s * math.exp(-math.pow(x - m,2)/2/s/s)

m_pi = 6.68 $ TOF\index{Time of flight@Time-of-flight} for pi m_k
= 6.87 # TOF\index{Time of flight@Time-of-flight} for K sigma =
0.2 # std of TOF\index{Time of flight@Time-of-flight} measurement

def integrate(x_l=6.0, x_h=7.5, step=0.01, f_pi=0.5):
integ = 0.0
n_step = int((x_h-x_l)/step)
for s in xrange( n_step ):

t = x_l + (s+0.5)*step
g_pi = gaus(t, m_pi, sigma)
g_k = gaus(t, m_k, sigma)
val = math.pow(g_pi - g_k, 2)/(f_pi*g_pi + (1. - f_pi) * g_k )
integ += val*step

return integ

##############################
for f_pi in [0.1, 0.3]:

res = integrate(x_l=5., x_h=10, step=0.001, f_pi=f_pi)
print f_pi"==>", res
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Chapter 3
Accelerators and Experimental Apparatuses

Abstract The subject of the third chapter is the motion of charged particles induced
by electromagnetic fields. The first section focuses on the kinematics of charged
particles inside static fields and its application for particle tracking. The second
section is dedicated to the physics of accelerators. The last section is devoted to the
concept of luminosity and event rates at colliders.

3.1 Tracking of Charged Particles

Tracking a charged particle is the general problem of determining the particle trajec-
tory by interpolating a collection of position measurements. In some circumstances,
one can assume that the particle trajectory gets sampled by the detector with neg-
ligible impact on the particle kinematics: the equation of motion of the particle is
therefore the same as if there were no detector at all. While this is in general the case
for high-energy and minimum ionising particles and for sufficiently thin detectors,
this assumption breaks downwhen the particles have a high probability of interacting
inside the detector. In general, the interaction of the particle with the detector has to
be accounted for, and a variety of techniques, either analytical orMonte Carlo-based,
exist for the purpose of estimating the kinematics of the particle cleared from de-
tector effects. Two main cases should be considered when dealing with the tracking
of charged particles. In the first situation, the particle momentum is assumed to be
known by other means, or perhaps is not relevant at all, and one is rather interested
on the track direction and/or position at an arbitrary location in space, given a set
of measurements. In the second situation, tracking is performed in a static magnetic
field at the purpose of extracting the particle momentum.

Linear Tracking

Let us assume that the tracking system consists of N + 1 measuring stations located
at the positions x0, . . . , xN , equally spaced across the spectrometer length L (also
known as lever arm), and characterised by the same spatial resolution σ . In the
absence of a magnetic field, the particle trajectory is a straight line. The measured
points y = (y1, . . . , yN ) can be therefore fitted to a linear function:

© Springer International Publishing AG 2018
L. Bianchini, Selected Exercises in Particle and Nuclear Physics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-319-70494-4_3
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Fig. 3.1 Examples of linear
tracking using N + 1 equally
spaced measuring stations
over a total lever arm L

x0 xc xN−1 xNx1 ... ...

L

y(x) = a + b x, (3.1)

see Fig. 3.1. Since the vector y of measurements depends linearly on the unknown
parameters a and b, the theory of χ2 estimators can be applied analytically to yield
the estimators of the intercept (â) and slope of the line (b̂). The variance of the
estimators are given by [1]:

Var
[
b̂
]
meas.

= σ 2

L2

12 N

(N + 1)(N + 2)
, Var

[
â
]
meas. = σ 2

N + 1
+ x2c Var

[
b̂
]
meas.

,

(3.2)

where xc = (xN + x0)/2 is the coordinate of the middle point of the spectrometer.
Furthermore, if xc = 0, the two estimators are uncorrelated. Given N + 1 measuring
stations and a total lever arm L , the configuration leading to the smallest possible

value of Var
[
b̂
]
corresponds to half stations clustered at the front and half at the rear

of the spectrometer, giving

Var
[
b̂
]opt.
meas.

= σ 2

L2

2

(N + 1)
(3.3)

The effect of multiple scattering through small angles (MS), on the slope, see
Sect. 2.1, is given by the second of Eq. (2.8), namely:

Var
[
b̂
]
MS

= 〈y〉2
L2

= 〈θ2
y 〉
3

, (3.4)

where 〈θ2
y 〉 can be computed according to Eq. (2.7) taking into account the full ma-

terial budget in the the N + 1 stations.

Tracking in Magnetic Field

In the presence of a static magnetic field, the trajectory of a charged particle is
no longer a straight line. In the simplest case, the magnetic field can be assumed
uniform inside the spectrometer, B(r) = B0. The trajectory is then given by a helix,

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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see Problem3.2, whose projection onto the plane orthogonal to the magnetic field is
a circle of radius R:

(x − x0)
2 + (y − y0)

2 = R2, with R = |p| cos λ

q |B| , (3.5)

where λ is the angle between the particle momentum and the plane orthogonal to
the B field direction (dip angle). The momentum component onto this plane is usu-
ally denoted as transverse momentum pT ≡ |p| cos λ. For large transverse momenta,
the radius R is usually much larger than the lever arm L , so that Eq. (3.5) can be
approximated to first order to give:

y(x) = a + b x + c x2, (3.6)

with c = (2R)−1. Again, the measurement vector y depends linearly on the unknown
parameters, so that a χ2 estimator can be obtained analytically to yield the estimators
â, b̂, and ĉ, from which the particle momentum can be inferred.

The momentum resolution δpT/pT achievable by tracking a charged particle in
magnetic field depends on the layout of the spectrometer, i.e. the number and location
of the measuring layers, the position resolution of the measuring stations, the lever
arm, the material budget, the magnetic field, etc. However, a simplified treatment of
tracking in magnetic field for energetic particles, i.e. such that the bending power of
Eq. (3.43) is small, allows to derive the dependence of δpT/pT upon the main dimen-
sionful quantities involved in the problem, namely the lever arm of the spectrometer
L , the magnetic field intensity B, the position resolution δy, and the material budget,
conveniently measured in radiation lengths X0. To this purpose, let’s consider the tra-
jectory of a charged particle on the plane transverse to the magnetic field. As shown
in Problem3.2, the trajectory is an arc of length L and radius R given by Eq. (3.45).
The bending angle θ = L/R is assumed to be small. The maximal distance of the arc
from its cord is the so-called sagitta, and is usually denoted by s. From its definition,
it follows that:

s = R

(
1 − cos

θ

2

)
≈ R

θ2

8
= L2

8R
. (3.7)

Regardless of the details of its design, the spectrometer will sample the track in
a number of points, thus allowing to indirectly measure s. The uncertainty on the
sagitta will be of the order of the single-point uncertainty δy, i.e. δs ∼ δy. For small
uncertainties δs one has:

(
δpT
pT

)

meas.

= δR

R
= δs

s
∼ δy

s
= 8 δy R

L2
= 8 δy

q B L2
pT

= 8δy

0.3 z B L2
pT, (3.8)
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where the last equality assumes that the units GeV/c, T, and m are used, see Prob-
lem3.3. Therefore, the relative momentum resolution from the position measure-
ments alone depends linearly on the momentum, and is inversely proportional to
B L2. At low momenta, another effect usually dominates the momentum resolution,
namely themultiple scattering (MS) inside the spectrometer. Again, this effect should
be evaluated by considering the full spectrometer design. However, the main features
and the order-of-magnitude of theMS-induced uncertainty can be determined by con-
sidering a simple configuration where the particle track receives a deflection angle

δθ =
√

〈θ2
T〉 as given by Eq. (2.8). This angle will induce a shift in the measured

radius R such that:

δθ =
∣∣∣∣δ
(
L

R

)∣∣∣∣ = L

R2
δR,

(
δpT
pT

)

MS

= δR

R
= R

L
δθ =

(
pT

0.3 z B

)
1

L
z
0.0136

βpT

√
L

X0

= 1

0.3 B

0.0136

β

√
1

L X0
, (3.9)

and again the last equality assumes that the unitsGeV/c, T, andmare used. Therefore,
the relativemomentum resolution fromMSalone does not depend on themomentum,
and is inversely proportional to B

√
L . It also depends on the traversed material as

∼ X−1/2
0 , so the effect is more relevant in condensed and high-Z materials, and less

in gas and low-Z materials. Since the uncertainty from the positionmeasurement and
the MS inside the detector can be assumed to be independent, the overall momentum
resolution is generally parametrised as:

(
δpT
pT

)

tot

=
[(

δpT
pT

)

meas.

⊕
(

δpT
pT

)

MS

]
= a pT ⊕ b, (3.10)

where a and b are constants. Differently from calorimeters, where the relative energy
resolution improves with energy, see Eq. (2.93), the relative momentum resolution
of tracking detectors gets worse at larger momenta.

Three configurations are worth being considered because of the possibility to
determine analytically the corresponding momentum resolution. They are illustrated
in Fig. 3.2. In all cases, the N + 1measuring stations are assumed to be characterised
by the same spatial resolution σ . In the first configuration, the measuring stations are
uniformly spaced. It can be shown[1] that the theory of χ2 estimators provides the
following relative momentum resolution:

(
δ pT
p2T

)

meas.

= σ
√
AN

0.3 |B| L2
, (3.11)

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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where AN is a function of N given by [1]:

AN = 720 N 3

(N − 1)(N + 1)(N + 2)(N + 3)
≈ 720

N + 5
. (3.12)

Numerically,
√
AN/8 ≈ 0.8 ÷ 1.2 up to N ≈ 10, thus showing that the estimate of

Eq. (3.8) applies to this configuration to better than 20% for typical values of N . The
effect of MS has been calculated as well [1], giving

(
δ pT
p2T

)

MS

= 1

0.3 |B|
0.0136

β

√
CN

L X0
, (3.13)

with CN = 1.3 ÷ 1.4.
Given a fully magnetised spectrometer with lever arm L and N + 1 available

stations, onemaywonderwhat is the configuration that yields the smallestmomentum
resolution. The answer is provided by the second layout of Fig. 3.2, where half of
the stations are clustered around xc, and the other half are equally distributed at the
rear and at the front of the magnetised volume. It can be shown that the momentum
resolution from measurement uncertainty only achievable by such configuration is
given by [1]:

(
δ pT
p2T

)opt.

meas.

= σ
√
BN

0.3 |B| L2
, with BN = 256

N + 1
, (3.14)

thus giving a factor of about 1.4 smaller relative resolution for N ≈ 10, compared
to Eq. (3.11).

Finally, we consider the case where the lever arm is L , but the magnetised volume
has a length of � < L . It can be shown [2] that a configuration like the one illustrated
in the third cartoon of Fig. 3.2, with half stations uniformly distributed at the front
and rear of the spectrometer and the other half at the centre, i.e. near to the magnet,
yields a relative momentum resolution:

(
δpT
p2T

)

meas.

= 8σ√
N + 1

1

0.3 |B| � L . (3.15)

A simple proof is proposed in Problem3.8.

Problems

Problem 3.1 Determine the equation of motion of a classical point-like particle of
charge q, mass m, and initial velocity v0, moving inside a static and uniform electric
E and magnetic field B.
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Fig. 3.2 Examples of
particle tracking using N + 1
measuring stations over a
total lever arm L . In the first
and second case, the
spectrometer is immersed in
a uniform magnetic field
providing a total bending
power of |B|L . Two layouts
of the measuring stations are
deployed: uniformly spaced
(top) and clustered at the
front, middle, and rear of the
spectrometre (centre). In the
last case, the spectrometer is
not fully magnetised and the
bending power is only |B|�
(bottom); the measuring
stations are equally
distributed at the front and
rear of the magnetised
volume, and at the front and
rear of the spectrometer as to
achieve a lever arm L
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Solution

A classical particle of charge q and mass m moving inside a uniform electric field E
superimposed to a uniform magnetic field B is subject to the classical force

F = q(E + v × B). (3.16)

The second term in the right-hand side of Eq. (3.16) described the Lorentz force. The
equation of motion r(t) is determined by Newton’s law:

dp
dt

= F = q (E + v × B), (3.17)

which is a system of three coupled ODE. We choose the reference frame so that the
z-axis is aligned along B, i.e. B = (0, 0, |B|), and the y-axis is parallel to E × B,
so that E = (E⊥, 0, E‖) with E⊥ > 0, and. We further define the origin such that at
time t = 0 the particle is at the origin of the reference frame. Equation (3.17) and the
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boundary conditions can be written by components as:

⎧⎪⎨
⎪⎩

ẍ = eE⊥
m + e|B|

m ẏ(t) ≡ E⊥ + ωB ẏ

ÿ = − e|B|
m ẋ(t) ≡ −ωB ẋ

z̈ = eE‖
m ≡ E‖

,

⎧⎪⎨
⎪⎩

ẋ(0) = v0x
ẏ(0) = v0y
ż(0) = v0z

,

⎧⎪⎨
⎪⎩

x(0) = 0

y(0) = 0

z(0) = 0
(3.18)

where we have defined:

ωB ≡ e |B|
m

, E⊥ ≡ e E⊥
m

, E‖ ≡ e E‖
m

. (3.19)

The first of Eq. (3.19) is also known as cyclotron frequency. Integrating once the
three equations in the system(3.18), we get:

⎧
⎪⎨
⎪⎩

ẋ = E⊥ t + ωB y + v0x
ẏ = −ωB x + v0y
ż = E‖ t + v0z

(3.20)

Inserting the second of Eq. (3.20) into the first, we have an equation in x(t) alone:

ẍ = −ω2
B x + (E⊥ + ωB v

0
y) = −ω2

B

(
x + E⊥/|B| + v0y

ωB

)
, (3.21)

which can be integrated to yield:

x(t) =
⎛
⎝− 1

ωB

√(
E⊥
|B| + v0y

)2

+ v0x

⎞
⎠ cos(ωB t + α) + E⊥/|B| + v0y

ωB
, (3.22)

where α is defined such that

tan α = v0x
v0y + E⊥/|B| . (3.23)

Inserting this result into the second of Eq. (3.20), we get:

y(t) =
⎛
⎝ 1

ωB

√(
E⊥
|B| + v0y

)2

+ v0x

⎞
⎠ sin(ωB t + α) − E⊥

|B| t − v0x
ωB

. (3.24)
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Finally, the last component can be obtained by integrating the third equation of the
system(3.20) to give:

z(t) = E‖
2

t2 + v0z t. (3.25)

Therefore, the equation ofmotion of the particle on the x-y plane is a uniform circular
motion with angular frequence ωB centred around the point:

rc(t) =
(
E⊥/|B| + v0y

ωB
, − E⊥

|B| t − v0x
ωB

, 0

)
, (3.26)

which drifts with constant velocity along the direction of E × B. Along the direction
of the magnetic field, the motion is instead uniformly accelerated. The velocities
along the y-axis at the time when the motion along x reverts its direction are given
by:

0 = ẋ(tn) =
√(

E⊥
|B| + v0y

)2

+ v0x sin(ωB tn + α) ⇒ tn = kπ − α

ẏ(tn) = ±
√(

E⊥
|B| + v0y

)2

+ v0x − E⊥
|B| . (3.27)

Hence, the motion along the y direction reverts direction if at least one among |v0x |
and |v0y | is larger than zero, otherwise the trajectory goes through cusps. For the
special case E‖ = 0, and assuming that the particle is initially at rest, i.e. v0 = 0, the
mean velocity 〈v〉 is given by the time-average of v(t), namely:

〈v〉 =
⎛
⎝

〈ẋ〉
〈ẏ〉
〈ż〉

⎞
⎠ =

⎛
⎝

0
−|E|

|B|
0

⎞
⎠ = E × B

|B|2 . (3.28)

Discussion

The motion of charged particles inside a simultaneous static electric and magnetic
field is a common situation in particle physics experiments. A typical example is
provided by the Time Projection Chamber discussed in Problem2.4, where the elec-
tric field is needed to drift the ionisation electrons to the multiplication region, while
the magnetic field allows to measure the track curvature, hence the particle momen-
tum, see Problem3.2. In a TPC, the fields are parallel, i.e. E⊥ = 0, a configuration
that helps reducing the lateral diffusion of the charge, see Problem2.42. Another
canonical example is a microstrip detector (see Problem2.43) inversely polarised
and immersed in an orthogonal magnetic field, i.e. E‖ = 0. In both cases, however,
the equation of motion are not given by the solution found here because the electrons
do not move in vacuum, but interact with the medium (the filling gas for TPC, the

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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silicon crystal for the microstrip). The problem should be therefore treated with a
proper kinetic theory of the interactions with the traversedmaterial. A simple friction
model predicts that the charged particles (e.g. electrons) will drift with velocity

v = μe

1 + ω2
Bτ 2

(
E + ωBτ

|B| E × B + ω2
Bτ 2

|B|2 (E · B)B
)

, (3.29)

where μe = eτ/me is the electron mobility, see Eq. (2.112), and τ is the mean time
between two collisions with the medium constituents. See Chap.34.6 of Ref. [3] for
more details. In particular, for E orthogonal to B, the drift velocity makes an angle
ΘL with respect to the electric field direction such that:

tanΘL = ωBτ = μe |B|. (3.30)

In semiconductive devices, like pixels or microstrips, this drift angle is also called
Lorentz angle and has important implications on the position resolution of the de-
tector. Using a typical value for electron mobility in silicium μe ∼ 103 V−1 cm2 s−2

and magnetic field intensities of order ∼1T, the Lorentz angle turn out to be sizable,
i.e. ΘL ∼ 10−1.

Suggested Readings

The notation has been adapted from Chap.4.8 of Ref. [4]. See also Chap.34.6 of
Ref. [3] for more details on themotion of charged particles in gas uncer the combined
effect of electric and magnetic fields.

Problem 3.2 Show that the trajectory of a charged particle of momentum p and
charge q moving inside a uniform magnetic field B is a helix. What is the relation
between the particle momentum and the radius of curvature of the trajectory?

Discussion

When dealing with relativitic particles, the laws of kinematics change, but the time-
evolution law of Eq. (3.17) maintains its form. This can be for example proved by
deriving the equation from the relativistic generalisation of the Euler-Lagrange equa-
tion for a point-like charge q and massm moving in a classical electromagnetic field:

d

dt

∂L

∂ ṙ
− ∂L

∂r
= 0, with L(r, ṙ) = −mc2

√
1 − |ṙ|2

c2
− q φ(r) + q ṙ · A(r),

(3.31)

where ṙ ≡ v, and φ(r) and A(r) are the scalar and vector potential of the electric
and magnetic field, respectively, such that E = −∇φ and B = ∇ × A. Since B is
constant, we can always assume ∂tA = 0. Computing explicitely the derivatives in
Eq. (3.31), we get:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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d

dt
(pi + q Ai ) = dpi

dt
+ ∂Ai

∂t
+ v j∂i A j = −q

(
∂iφ − v j∂i A j

)
,

dpi
dt

= −q
(
∂iφ − v j

[
∂i A j − ∂ j Ai

]) = −q
(
∂iφ − v j εi jk [∇ × A]k

) =
= −q (∂iφ − [v × (∇ × A)]i ) = q Ei + q (v × B)i ,

dp
dt

= q E + q v × B. (3.32)

Hence, the relativistic extension of the time-evolution law for a point-like charge is
identical to the classical expression of Eq. (3.17), provided that the relativistic defi-
nition of momentum is used.

Solution

From Eq. (3.17) with E = 0, one can easily see that the momentum magnitude |p| is
constant in time, since

d|p|2
dt

= 2 p · dp
dt

∝ p · (p × B) = 0. (3.33)

Hence, Eq. (3.17) becomes:

mγ
d2r
dt2

= q
dr
dt

× B, mγ |v|2 d
2r

ds2
= q|v| dr

ds
× B,

d2r
ds2

= q

|p|
dr
ds

× B,

(3.34)

where we have changed variable from the laboratory time t to the trajectory length
s = |v| t , so that we can directly get a geometrical parametrisation of the curve.
We choose the reference frame like in Problem3.1, so that the system(3.34) can be
written by components as:

⎧
⎪⎨
⎪⎩

x ′′ = qB
|p| y

′ ≡ y′
K

y′′ = − qB
|p| x

′ ≡ − x ′
K

z′′ = 0

,

⎧
⎪⎨
⎪⎩

x ′(0) = − cos λ sinΦ0

y′(0) = − cos λ cosΦ0

z′(0) = sin λ

,

⎧
⎪⎨
⎪⎩

x(0) = x0
y(0) = y0
z(0) = z0

(3.35)

Here, Φ0 can be interpreted a posteriori as the angle in the x–y plane formed by
the radial vector that connects the centre of the circumference to the initial position,
measured with respect to the x-axis, see Fig. 3.3. The constant K is defined as K ≡
|p|/q|B|, while λ ∈ [0, π/2] is the dip angle with respect to the x–y plane. The
boundary condition on r′

0 is subject to the constraint |r′
0| = 1.

Integrating once the second of the system (3.35), we have:

y′ = − x ′

K
+ C ⇒ x ′′ = − 1

K 2
(x + KC) , (3.36)
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Fig. 3.3 Representation of
the trajectory r(s) of a
charged particle moving
inside a uniform magnetic
field B. The angle λ is called
dip angle, whereas Φ0 is the
angle of the radial vector
joining the centre of the
circumference to r0, with
respect to the x-axis

y

x

z

Φ0

R

λ

B

(x0, y0)

with C a constant of integration, hence x(s) satisfies the equation for a displaced
harmonic oscillator. Taking into account the boundary conditions in (3.35), we get:

x(s) = x0 + R

[
cos

(
s cos λ

R
− Φ0

)
− cosΦ0

]
. (3.37)

where R ≡ K cos λ. Substituting this expression into the second of (3.35), and taking
into account the boundary conditions for y:

y′ = R

cos λ
x ′′ = − cos λ cos

(
s cos λ

R
− Φ0

)
,

y(s) = y0 − R

[
sin

(
s cos λ

R
− Φ0

)
+ sinΦ0

]
. (3.38)

The last component can be trivially integrated to give:

z(s) = z0 + sin λ s. (3.39)

The projection of the curve onto the x–y plane is a circle of radius

|R| = |p| cos λ

|q| |B| = pT
|q| |B| , (3.40)

where pT is the transverse momentum, while the z-component increments linearly
with the curve length: the curve is therefore a helix of pitch p = 2π R tan λ. In
particular, for |s| � |R|, i.e. for large momenta, the trajectories in the x–z and y–z
planes can be approximated by straight lines:

x(z) ≈ x0 + sinΦ0

tan λ
(z − z0)

y(z) ≈ y0 − cosΦ0

tan λ
(z − z0) (3.41)
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The radius of curvature ρ of the track along the trajectory is given by:

ρ(s) =
∣∣∣∣
d2r
ds2

∣∣∣∣
−1

=
∣∣∣∣
q

|p|
dr
ds

× B

∣∣∣∣
−1

= |R|
cos2 λ

. (3.42)

The bending angle of the magnetic field is defined as the angle by which a charged
particle is bent by the field all along its path, i.e.:

Δθ =
∫

ds

ρ
=

∫
ds

∣∣∣∣
d2r
ds2

∣∣∣∣ = q

|p|
∫

ds

∣∣∣∣
dr
ds

× B(r)

∣∣∣∣ ≡ B

(|p|/q)
. (3.43)

The integral at the right-hand side of Eq. (3.43) is called bending power. Geometri-
cally, it corresponds to the integral along the path of the magnetic field component
orthogonal to the trajectory. The bending angle is therefore proportional to the bend-
ing power and inversely proportional to the ratio |p|/q, which in accelerator physics
is also known as beam rigidity, i.e. a measure of the particle resilence to be bent
by a magnetic field. In general, the bending power depends on the initial particle
direction, and it has to be computed numerically. For uniform magnetic fields, like
those generated at the inside of a long solenoid of internal radius Rcoil and intensity
|B|, the bending power from the interaction point up to the position of entrance in
coil rcoil is given by:

B =
∣∣∣∣
∫ rcoil

0
ds

dr
ds

∣∣∣∣ |B| cos λ = |rcoil||B| cos λ = Rcoil |B|. (3.44)

For example, the solenoid of the CMS experiment has an inner radius Rcoil ≈ 3m and
generates amagnetic field of intensity |B| ≈ 4 T, giving abendingpowerB ≈ 12 Tm
uniformly with respect to the pseudorapidity η, as defined in Eq. (1.161). At large
values of η, however, the magnetic field is no longer uniform and the bending power
features a dependence on the direction η. See Ref. [5] for a more exact evaluation of
B in the ATLAS toroid and CMS solenoid.

Suggested Readings

The formalism used in this exercise and its application in real experiments can be
found in Ref. [5].

Problem 3.3 Show that the transversemomentum pT [GeV/c]of a particle of charge
q = z e, moving inside a uniform magnetic field of intensity B [T], along a circular
path of radius R [m] on the transverse plane, is given by the formula:

pT = 0.3 z B R. (3.45)

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Solution

From Eq. (3.40), we see that the radius of curvature R of a particle moving in the
plane orthogonal to B is related to the transverse momentum pT by the relation:

pT = q |B| R. (3.46)

Dividing the two sides of Eq. (3.46) by the units in which we wish to express the
dimensionful quantities, we get:

pT
GeV/c

= 1

GeV/c
(z · e) ·

( |B|
T

· T
)

·
(
R

m
· m

)
=

= z

( |B|
T

)
·
(
R

m

)
2.998 × 108 m/s e Tm

109 eV
=

= 0.3 z

( |B|
T

) (
R

m

)
, (3.47)

where we have used the fact that T = Vm−2 s. The last approximation in Eq. (3.47) is
valid to better than the permill level, which is usually fine formost of the applications.

Bando n. 18211/2016

Problem 3.4 A drift chamber is immersed in a magnetic field with intensity |B| =
0.8T. A photon converts into a e+e− pair. Two tracks on the plane orthogonal to the
magnetic field, and with radius of curvature R = 20 cm, are observed. The tracks
start parallel to each other. Determine the energy of the incoming photon.

Solution

The electron and positron have momentum |pe| given by Eq. (3.45), namely

|pe| = 0.3 |B| R = 0.3 · 0.8 · 0.2MeV = 48MeV. (3.48)

Since the tracks are intially parallel, the momentum transfered to the nucleus is of or-
der |q| ∼ m2

e/Eγ � me, and the kinetic energy |q|2/2mN of the recoiling nucleus is
negligible, see Problem1.48. To good approximation, the photon energy is therefore
given by:

Eγ ≈ 2 Ee ≈ 2 |pe| = 96MeV. (3.49)

We can thus verify a posteriori that the most probable interaction process for the
incoming photon is indeed pair-production.

Bando n. 18211/2016

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Problem 3.5 TheLEPdipoles allowed for amaximummagneticfield |B| = 0.135T,
and covered up to 2/3 of the 27 km-long storage ring. What was the largest electron
energy attainable?

Solution

The effective radius of curvature at LEP was about (0.66 · 27/2π) km ≈ 2.9 km.
The maximum electron energy is therefore given by Eq. (3.45):

Emax = |pmax| = (0.3 · 0.135 · 2.9 × 103)GeV ≈ 117GeV. (3.50)

The actual limit achieved at LEP was a bit smaller than this, namely Emax =
104.5GeV, and was dictated by the limitations of the RF accelerators. This limit
had important implications on the reach for the Higgs boson later discovered at the
LHC [6, 7], since themaximumcentre-of-mass energy of 2 Emax ≈ 209GeVallowed
the experiments to probe Higgs boson masses below about 115GeV, thus outside
the experimental value of 125GeV established years later at the LHC [8].

Suggested Readings

The energy record at LEP was achieved in 2000, see e.g. the original CERN an-
nouncement [9].

Problem 3.6 A beam of momentum |p| = 2GeV contains both kaons and pions.
The beam passes between the plates of an electrostatic separator of length L . The
electric field between the plates has uniform intensity |E| = 10 kV/cm. Determine
the opening angle between the two beams emerging from the separator.

Solution

The kinetic energy acquired by the beam due to the work done by the electric field
is negligible, so we can assume |p| to be approximately constant during the motion.
Let’s denote the coordinate parallel to the electric field by y, such that y(0) = 0.
From Eq. (3.32), we get:

e |E| = m
d(βyγ )

dt
≈ m γ β̇y, ÿ = e |E|

m γ
, y(t) = 1

2

e |E|
m γ

t2,

y (x) = e |E|
2|p|

x2

β
, y′ (x) = e |E|

|p|
x

β
. (3.51)

The opening angle between the two beams at the exit of the separator is therefore
given by:

|Δy′(L)| = e |E| L
|p|

⎛
⎝
√
1 + m2

K

|p|2 −
√
1 + m2

π

|p|2

⎞
⎠ ≈ e |E| L

2|p|3 (m2
K − m2

π ), (3.52)
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where we have expanded the square root to first order. Numerically, we get:

|Δy′(L)| = 106 eV/m · 1m
2 · (2GeV)3

· (0.23GeV2) = 1.4 × 10−5 rad. (3.53)

Discussion

Equation (3.52) shows that a static electric field can be used to separate particles
of different mass but same momentum, which may have been for example selected
by a magnetic field. However, due to the ∼ |p|−3 scaling of the opening angle, this
method becomes inefficient for momenta in excess of a few GeV, as the numerical
calculation also shows. Indeed, electric fields more intense than a few tens of kV/cm
can give rise to the formation of discharges (in air at standard pressure, the break-
down voltage is about 30 kV/cm). For larger beam momenta, separation techniques
based on the use of RF cavities become more efficient.

Suggested Readings

This topic is briefly discussed in Chap.11.4 of Ref. [10].

Problem 3.7 Amass spectrometer consists of a pair of electrodes kept at a potential
difference |V0| = 1MV, followed by a magnetic analyzer of length L = 1m and
uniform magnetic field with intensity |B| = 1 kG. Positive ions are produced at rest
at the grounded electrode and accelerated by the electric field towards the cathode.
The position of arrival y at the opposite side of the spectrometer is measured with
an uncertainty σy . The beam to be composed of 12C+ and 13C+ ions in unknown
proportion. What is the minimum resolution σy necessary to identify the correct
mass number to better than 3σ per incident ion?

Discussion

The use of accelerated beams and magnetic analysers for mass spectroscopy is a
well established technology known under the name of acceleratedmass spectroscopy
(AMS). An application of AMS is radiocarbon dating for assessing the age of organic
samples. See e.g. Ref. [11] for more informations on the subject.

Solution

The kinetic energy of the ion at the entrance of the spectrometer is T = qV0 =
|p|2/2m. We can assume classical kinematics since qV0 = 1MeV is small compared
to the mass of carbon ions. The radius of curvature R is then given by Eq. (3.40):

R = |p|
q B

=
√
2m q V0

q B
(3.54)
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Fig. 3.4 Sketch of a mass
spectrometer

p1, p2

B
Δy12C+

13C+

E

V = −V0V = 0

Replacing the symbols by their values, we get for the 12C+ population:

R(12C+) =
√

2 · 106 V
1.6 × 10−19 C

12 × 10−3 kg

6.0 × 1023
1

0.1T
= 5.0m. (3.55)

In Eq. (3.55), we have use the fact that one mole of 12C weighs exactly 12 g. The
apparatus measures the lateral displacement y with respect to the initial beam po-
sition, see Fig. 3.4. Since L/R ≈ 0.2, we can approximate the ion trajectory with a
parabola to yield:

y ≈ L2

2 R
=

√
q

2m V0

|B| L2

2
, (3.56)

which is accurate to the percent level. For 12C+, y ≈ 10 cm,which is smalle compared
to L , thus justifying the use of Eq. (3.56). Since Δm = 1 a.u. is small compared to
the 12C mass, we can approximate:

Δy

y
≈ 1

2

Δm

m
⇒ Δy ≈ y

2

Δm

m
. (3.57)

In order to separate the two mass numbers to better than Nσ standard deviations per
ion, the position resolution needs to satisfy:

σy <
Δy

Nσ

= 1

4 Nσ

√
q

2m V0
|B| L2 Δm

m
=

= 1

4 · 3

√
1.6 × 10−19 C

2 · 2 × 10−26 kg · 106 V · 0.1T · 1m2 · 1

12
= 0.1 cm. (3.58)

Bando n. 13705/2010

Problem 3.8 A tracking system consists of a pair of multiwire chambers separated
by a distance d = 1m, and with spatial resolution σ = 150µm, followed by a dipo-
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lar magnet with bending power B = 2 Tm, and by an identical pair of chambers.
Determine the relative resolution on the momentum transverse to the magnetic field
as a function of the transverse momentum itself. Assume that both the dip angle of
the impinging particle and the angular deflection induced by the magnet are small.
Neglect the effect of multiple scatterring inside the chambers.

Solution

The spectrometer design corresponds to the last of Fig. 3.2. We can therefore apply
the result from Eq. (3.15) giving:

δpT
pT

= 8σ√
N + 1

1

0.3B L
pT = 8 · 150 × 10−6

√
4

pT
0.3 · 2 · 2 = 5 × 10−4 pT, (3.59)

where L is the total length of the spectrometer, i.e. L = 2 d = 2m, and pT is
measured in GeV. One can convince himself of this result by noticing that the
system measures two segments, before and after the magnet, respectively. The
uncertainty on the slope b̂ of each segment is given by the first of Eq. (3.2),
namely σb̂ = √

2σ/d = 2
√
2σ/L . The uncertainty on the bending angle is there-

fore
√
2σb̂ = 4σ/L . This angle is related to the momentum and bending power via

Eq. (3.43), thus giving δpT/p2T = 4σ/(0.3B L), in agreement with Eq. (3.59).

Suggested Readings

For more information on the topic, the reader is addressed to dedicated textbooks, in
particular Chap.8 of Ref. [12] and Chap.3.3 of Ref. [2].

Bando n. 1N/R3/SUB/2005

Problem 3.9 Discuss how the transversemomentumresolution δpT/pT for a charged
particle measured by a magnetic spectrometer depends on the transverse momentum
pT if the particle moves in air or inside iron. Assume a typical value of 100µm and
1m for the position resolution and lever arm, respectively.

Solution

The relative momentum resolution from the measurement error and from multiple
scattering can be parametrised as in Eq. (3.10): it is roughly constant at lowmomenta,
while it grows linearly with pT at large momenta. The effect of MS is more relevant
in iron than in air because of the larger particle density and Z number. The radiation
lengths for air and iron can be found in Table2.3. Using these values, we get:

(
δpT
pT

)air

MS

/

(
δpT
pT

)Fe

MS

=
√

XFe
0

X air
0

=
√
1.8 cm

300m
= 8 × 10−3. (3.60)

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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The momentum at which the measurement error and multiple-scattering become of
the same size is given by:

pT = z

8 δy

0.0136

β

L3/2

√
X0

. (3.61)

Using typical values δy = 100µm and L = 1m, we get:

pT ≈
{
100GeV Fe

1GeV air
(3.62)

Therefore, multiple scattering is negligible in air for momenta in excess of a few
GeV, so that δpT/pT ∼ a pT, whereas momentum resolution in iron is approximately
constant, δpT/pT ∼ b, up to momenta of about 100GeV.

Bando n. 13705/2010

Problem 3.10 A tracking system for measuring high-momentum muons consists
of three chambers, separated by a distance L = 1m and with spatial resolution
σ0 = 100µm, σ1 = 50µm, and σ2 = 100µm. The chambers are located inside a
uniform magnetic field of intensity |B| = 1T. Consider muons of pT = 1TeV that
impinge almost normally to the chambers: what is their the charge misidentification
probability?

Solution

Let the initial muon direction be aligned along the x-axis, and denote the orthogonal
coordinate by y. We further chose the direction of the y-axis such that the concavity
of the true muon trajectory is positive, see Fig. 3.5.

A given event will produce three spatial coordinates y = (y0, y1, y2). For later
use, we define the new coordinate

yext1 = (y2 + y0)

2
. (3.63)

Fig. 3.5 Illustration of the
measuring system
considered in the Problem

x0 x1

L

B

L

x2

y2
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extrapolation

fit≈ s
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It is easy to convince oneself that a sign-flip corresponds to s = (yext1 − y2) < 0,
where s coincides with the sagitta of the curve modulo terms of order L2/2R. Since
s is given by the difference between two gaussian and independent variables, it will
be also normally distributed with mean and standard deviation:

μs = 〈yext1 〉 − 〈y1〉 = (2L)2

4 R
− L2

2 R
= 0.3 |B| L2

2 pT
= 0.3 · 1 · (1)2

2 · 103 = 150µm,

σs = σ 2
2 + σ 2

0 + σ 2
2

4
= 87µm, (3.64)

wherewe have used the second of Eq. (3.2) to relate the variance of yext1 to the variance
of y0 and y2. Therefore:

Prob [s < 0] = 1√
2π σs

∫ 0

−∞
ds exp

[
− (s − μs)

2

2 σ 2
s

]
= 1

2

[
1 + erf

(
− μs√

2 σs

)]
,

(3.65)

where erf(x) is the error function defined by:

erf(x) = 2√
π

∫ x

0
dt e−t2 , (3.66)

which is available in almost all standard libraries, e.g. the math library in Python.
Replacing the symbols in Eq. (3.65) by their numerical values, we get a misidentifi-
cation probability:

Prob [s < 0] = 1

2

[
1 + erf

(
− 150µm√

2 · 87µm
)]

= 4.2% (3.67)

The analytical result can be cross-checked by a simple Monte Carlo simulation of
the experimental setup, see Appendix3.4. For example, by using 1M toy events,
we get Prob [s < 0]MC = (4.18 ± 0.02)%, in agreement with the analytical result of
Eq. (3.67).

Bando n. 1N/R3/SUB/2005

Problem 3.11 A spectrometer measures the momentum of charged particles of
unitary charge and momentum of a few GeV. It consists of three parallel planes
of position detectors with spatial resolution σx = 100µm, separated by a distance
a = 20 cm. The planes are immersed in a uniform magnetic field B with intensity of
1 T, parallel to the planes and orthogonal to the measured position x . Particles enter
the spectrometer almost perpendicular to the detector panes. Estimate the transverse
momentum resolution at |p| = 2GeV.
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Solution

The spectrometer configuration corresponds to the first of Fig. 3.2 with N = 2. We
can therefore use the analytical solution of Eq. (3.11) giving:

δpT
pT

= σ
√
AN

0.3 |B| L2
pT = 100−6 · 8 · 1.22

0.3 · 1 · (0.4)2
· 2 = 4.1% (3.68)

As we have seen, a simple argument like the one used to derive Eq. (3.8) would
have given a result in agreement with Eq. (3.68) within 20%. Actually, for N = 2
we could have also easily guessed the extra factor of 1.22. Indeed, if we denote the
three measured positions by yi , i = 1, 2, 3, the sagitta s and its uncertainty δs can
be estimated by:

s ≈ y2 − y1 + y3
2

⇒ δs =
√
3

2
σ ≈ 1.22 σ, (3.69)

in agreement with the Eq. (3.11).

Bando n. 1N/R3/SUB/2005

Problem 3.12 A magnetised iron slab of thickness d = 60 cm is saturated by a
constant magnetic field whose force lines can be assumed to be fully contained inside
the slab. Let the other two dimensions of the slab be large compared to the thickness
and let’s assume that the boundary conditions impose the magnetic fiel B to be given
byB = B(y) ez , where B(y) is an even function of y − d/2, such that y = 0 (y = d)
correspond to the upper (lower) faces, and ez is orthogonal to the transverse plane.
Furthermore, a numerical simulation predicts that B(y) is approximately constant
around B0 = 2 Twithin a tolerance of 10%.Wewish tomeasure the bending power of
themagnet to better than 1% by using cosmicmuons with pT in excess of 5GeV. The
muon direction at the entrance and at the exit of the slab is measured by two identical
stations of drift tubes with angular resolution σφ = 2mrad, where φ measures the
angle on the transverse plane. The muon momentum downstream of the slab is
measured by an independent spectrometer of perfect resolution. Determine how
many vertical muons are needed to achieve the desired accuracy on the bending
power by assuming a cosmic muon spectrum dNμ/dE ∝ E−α with α = 2.7. Does
the answer change if the alignment between the two stations cannot be constrained
to better than 5mrad?

Solution

Given the approximate field map, the bending angle (3.43) is about

Δφ � 0.3 · 2 · 0.6
5

= 72mrad, (3.70)



3.1 Tracking of Charged Particles 197

hence the total track length inside the slab for vertical muons has length d to better
than 0.3%, which is an acceptable approximation. The same arguments allows to
approximate the trajectory by a parabola. From Eqs. (3.34) and (3.47), it follows
that:

dr
ds

(s) − dr
ds

(0) = 0.3 · z
|p|

∫
dr × B(r), (3.71)

where the momentum is measured in GeV, lengths in b, and the magnetic field in T.
The z factor can be ±1 for positive/negative muons. Notice that |p| is assumed to be
constant.Wefirst consider the ideal case that the energy loss is negligible compared to
the muon momentum, and then generalise to the case where the curvature decreases
throughout the trajectory because of a continuous energy loss.

SinceB = B(y) ez , for almost vertical muons dr × B(r) = dy B(y) eφ , where eφ

is the unit vector lying on the transverse plane and orthogonal to the projection of
dr onto the transverse plane. Projecting both sides along eφ , and neglecting terms of
order (Δφ)2 we get:

pT Δφ = 0.3 · z
∫

dy B(y). (3.72)

Equation3.72 implies that for all muons the product pT Δφ is proportional to the
bending power

∫
dy B(y). We can therefore combine the measurements from N

independent muon tracks into an estimator of the bending power. Each angular
measurement comes with an uncertainty

σpT Δφ = pT

√
2σ 2

φ +
(
0.0136

βpT

)2 d

X0
≡ pT

√
c1 + c2

p2T
(3.73)

where the first term on the right-hand side accounts for the measurement error from
each DT station, and the second accounts for multiple-scattering across the iron slab.
Given N independent normal measurements with same mean 〈pTΔφ〉 and standard
deviations σi , the variance of the maximum-likelihood estimator is given by

σ 2
〈pTΔφ〉 =

(∑
i

1

σ 2
i

)−1

, (3.74)

see Eq. (4.83). For N � 1, we can approximate the finite sum at the right-hand side
of Eq. (3.74) by

σ 2
〈pTΔφ〉 ≈

(
N

∫
dpT f (pT)

1

σ 2
pT Δφ(pT)

)−1

, (3.75)

http://dx.doi.org/10.1007/978-3-319-70494-4_4
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where f (pT) ∝ dNμ/dE is the differential distribution of muon energies that arrive
at the detector, satisfying the requirement:

∫ pHT

pLT

dpT f (pT) = 1, (3.76)

where pLT and pHT define the muon momentum acceptance in the sample. We assume
here that the detector acceptance is unity for all values of pT: although this is hardly
true in practice, the muon spectrum is so steeply falling that high-pT events will
have a negligible weight in Eq. (3.77). By assuming the power law dN/dpT ∝ p−α

T ,
Eq. (3.77) becomes:

σ 2
〈pTΔφ〉 ≈

(
N (α − 1)

pL (1−α)
T − pH (1−α)

T

∫ pHT

pLT

dpT
p−α
T

c2 + c1 p2T

)−1

. (3.77)

The integral at the right-hand side of Eq. (3.77) can be evaluated numerically, see
Appendix3.5. Using the numerical inputs from the problem (pLT = 5GeV, pHT = ∞,
σφ = 2mrad, X0 = 1.8 cm), we get:

σ〈pTΔφ〉
〈pTΔφ〉map

≤ 10−2 ⇒ N � 700. (3.78)

The statistical scaling of the ML estimator (3.77) is valid if the only uncer-
tainty comes from DT measurement and from MS. In the presence of a system-
atic misalignment εφ = 5mrad, however, the uncertainty on 〈pTΔφ〉 is limited by
pLT εφ/0.3 = 0.08Tm, which alone would give a relative uncertainty onB of about
7%, hence larger than the target accuracy of 1%. In order to remove the misaligne-
ment bias from the measurements, we notice that the combination 〈pTΔφ〉 has a sign
that depends on the muon charge. Therefore:

〈pTΔφ〉+ − 〈pTΔφ〉−
2

=
(
0.3

∫
dy B(y) + 〈pTεφ〉+

) − (−0.3
∫
dy B(y) + 〈pTεφ〉−

)

2

= 0.3
∫

dy B(y) (3.79)

where we have assumed that the μ+ and μ− spectra are identical. By dividing the
sample into a sub-sample of N/2 positive muons and one of N/2 negative muons,
the variance of the new estimator (3.79) is equal to Eq. (3.77) and is now free from
the systematic uncertainty due to the alignment.

Aword of caution for Eq. (3.71) is required. The assumption that |p| can be treated
as constant during the motion is certainly a valid approximation for tracking in air,
but for our case a quick computation shows that the muon energy loss after traversing
the slab is a non-negligible fraction of the initial muon energy. Indeed, from Eq. (2.3)
with the values from Table6.1 of Ref. [3] we find:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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ΔE ≈ 1.45MeVg−1 cm2 · 7.9 g cm−3 · 60 cm = 0.69GeV, (3.80)

so that neglecting the energy loss may result in a bias on the bending power in excess
of the target accuracy of 1%. Since the energy loss per unit length is to a good
approximation constant throughout the trajectory, the generalisation of Eq. (3.72)
becomes:

pT Δφ = 0.3 · z
∫

dy
B(y)

1 − y C
pT

, (3.81)

where C = dE/dx can be safely assumed to be constant for a given value of pT.
Because of Eq. (3.81), the factor y C/pT can be treated as a small perturbation and
the integral can be expanded around y = 0 to yield:

pT Δφ = 0.3 · z
∫ d

0
dy B(y)

(
1 + y

C

pT
+
(
y
C

pT

)2

+ . . .

)
. (3.82)

Given that B(y) is constant within 10%, we can estimate the size of the O(y2) term:

∫ d
0 dy B(y)

(
y C
pT

)2
∫ d
0 dy B(y)

≈
(B0d) 13

(
d C
pT

)2

B0d
≈ 0.6%, (3.83)

hence we can neglect it since it’s below the target resolution. Even with this approxi-
mation, we see that the product pT Δφ is no longer proportional to the bending power
alone, but involves a combination of the bending power and of the first moment of
the magnetic field. Following the assumption of the problem, we can parametrise the
field as:

B(y) = B0 + B ′′
0

2

(
y − d

2

)2

+ . . . (3.84)

Since δB/B0 � 10%, the fourth and higher-order terms will give increasingly negli-
gible contributions, and we can therefore neglect them. Under this assumption, one
can easily verify that

∫ d

0
dy B(y)

(
1 + y

C

pT

)
=

(∫ d

0
dy B(y)

)(
1 + 1

2

C d

pT

)
. (3.85)

The correction at the right-hand side of Eq. (3.85) is about 7%at pT = 5GeV, hence it
gives a non-negligible contribution to the bending angle and should not be neglected.
Therefore, Eq. (3.72) can be now generalised to:
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pT Δφ

1 + 1
2
C d
pT

= 0.3 · z
∫

dy B(y). (3.86)

Suggested Readings

This exercise is inspited to the work of Ref. [13], where a similar analysis technique
has been adopted to calibrate the magnetic field map in the return yoke of the CMS
spectrometer.

3.2 Accelerators

Accelerating particles into beams with the desired energy and space-time structure is
a primary need in experimental particle physics. Besides being used for fundamental
research, the majority of accelerators in use nowadays are devoted to industrial and
medical applications. Although numerous sources of natural radiation exist (e.g.
radioactive decays, cosmic radiation), the latter are often to weak to be relevant for
most of the applications requiring particles. This limitation is even more sever for
fundamental research, which is often conducted at the energy and intensity frontier.

Particles accelerators can be classified in two main families depending whether
the electric field that provides the acceleration is static or time-dependent. Static
accelerators, like the Cockroft-Walton, Ladderton, X-tube, Van de Graaf, etc., are
naturally associated with the concept of linear acceleration: particles of charge q
accelerate between two terminals kept at a voltage difference V0 and acquire an extra
kinetic energy E f = |q V0|, see Fig. 3.6

The same accelerating field cannot be used again for the same particle, since any
static electric field is irrotational:

∇ × E = −∂B
∂t

⇒
∮

ds · E = 0 ⇔ no “circular” acceleration if B is static.

(3.87)

Static accelerators are thus inherently limited in energy by the maximum electric
fields V0 achievable in safe conditions in the laboratory before phenomena like spark
formations and disruptive discharges occur. Time-dependent fields evade the bounds
imposed by Eq. (3.87), and open the way to high-energy acceleration. This can be
realised in both linear and circular fashion. Linear accelerators operated with radio-
frequencyfields (LINAC)work like a chain of static accelerators of equivalent voltage
Vr.f., whose accelerating gradient, as experienced by the particle, is replicated n times
in cascade, so that E f = n Vr.f.. In circular accelerators, each particle visits several
times the same point of the apparatus, receiving a kick q Vr.f. at each turn. If the
particle motion and the accelerating gradient are maintained with the appropriate
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Fig. 3.6 Examples of a Van de Graaf (left) and Cockroft-Walton (right) accelerator hosted at the
LNF site

synchronisation, the energy transfer sums up constructively resulting in an overall
energy increment. The cyclotron, betatron, and synchrotron are based upon this
concept.

The purpose of this section is to make the reader familiar with the different solu-
tions of accelerators, and thus most of the exercises have a rather qualitative solution.
Among the few quantitative tests that a non-expert of accelerator physics should
certainly know, we propose the calculation of radiation loss in circular and linear
colliders.

Problems

Bando n. 13705/2010

Problem 3.13 Compare the energy lost by an electron initially at rest accelerated
by a LINAC of length L = 10 km long, in which the accelerating field is 20MV/m,
with the energy lost by the same electron when, kept at an energy of 100GeV, it
makes a full round of a circular accelerator of radius 10 km. Does the result change
if the particle were a proton?
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Discussion

A particle of charge q that is accelerated by external forces (e.g. a magnetic field, a
RF wave, etc.) loses energy in the form of electromagnetic radiation. For a classical
particle, the power loss per unit solid angle is described by Larmor’s formula

dP

dΩ
= e2

4πc3
|v̇|2 sin2 θ, P =

∫
dΩ

dP

dΩ
= 2

3

e2|v̇|2
c3

, (3.88)

where θ is the polar angle with respect to the particle acceleration v̇. Here, e2 has
units of [kgm3 t−2], i.e. we assume the Heaviside–Lorentz units such that the first of
Maxwell equation reads ∇ · E = 4πρ. The relativistic generalisation of the second
of Eq. (3.88) proceeds through the replacement [14]:

P = 2

3

e2|v̇|2
c3

= 2

3

e2

m2c3

(
dp
dt

· dp
dt

)
→ −2

3

e2

m2c3

(
dpμ

dτ

dpμ

dτ

)
= (3.89)

= 2

3

e2

m2c3

[(
dp
dτ

)2

− β2

(
d|p|
dτ

)2
]

= 2

3

e2

c
γ 6

[
β̇
2 − (β × β̇)2

]
, (3.90)

where we have used the fact that dE = |v| d|p|. The last equality has been proved in
Problem1.4. We can now consider two cases: a linear acceleration, i.e. dp/dt ∝ p,
and a circular acceleration, i.e. dp/dt · p = 0.

For a linear accelerator, Eq. (3.89) becomes:

Plin. = 2

3

e2

m2c3
γ 2

(
dp
dt

)2 [
1 − β2

] = 2

3

e2

m2c3

(
dp
dt

)2

= 2

3

e2

m2c3

(
dE

dx

)2

,

(3.91)

where we have used again the relation dE = |v| d|p| ⇒ dE/dx = d|p|/dt . Since
dE/dx is proportional to the gradient of the accelerating field, it is independent of
the particle energy and depends only on the external field. The ratio between the
power loss and the power supplied by the external accelerating field is therefore:

Plin.
(dE/dt)

= 2/3 (e2/m2c3) (dE/dx)2

(dE/dx) |v| = 2

3

e2(dE/dx)

m2c4β
= 2

3

(dE/dx)

β(mc2/rc)
,

(3.92)

where rc = e2/mc2 is the classical particle radius. For an electron, rc = 2.8 ×
10−13 cm, and the denominator at the right-hand side of Eq. (3.92) as about 1.8 ×
1012 MeV/cm. An accelerating field able to supply an energy per unit length com-
parable to this value, the field intensity should of order 1012 MV/cm, which is far
above the maximum limit attainable in laboratories. Therefore, energy loss in linear
accelerators is always negligible.

For a circular accelerator, d|p|/dt is approximately zero, while |dp/dt | = ω|p|,
where ω is the revolution frequency Eq. (3.89) becomes:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Pcirc. = 2

3

e2

m2c3
γ 2ω2|p|2 = 2

3

e2c

R2
β4γ 4, (3.93)

where R is the radius of curvature of the circular orbit. The energy lost per orbit is
given by

ΔEorbit = Pcirc. · 2π
ω

= Pcirc. · 2π R

βc
= 4π

3

e2

R
β3γ 4. (3.94)

For an electron and proton beam, Eq. (3.94) takes the numerical values:

ΔEorbit

MeV
≈ 4π

3

1

137

197MeV fm

R

(
E

GeV

)4 1(
mc2/GeV

)4 =

=
{

8.8×10−2

(R/m)

(
E

GeV

)4
electrons

7.8×10−15

(R/m)

(
E

GeV

)4
protons

(3.95)

Solution

Assuming a constant accelerating field of intensity E = 20MV/m over a distance
L = 10 km, we see that the electron becomes relativistic already after a few tens of
centimeters, so that we can assume β = 1 since the beginning. Equation (3.91) then
gives:

ΔELINAC = Plin. · L
c

= 2

3

e2 L

m2
ec

4

(
dE

dx

)2

= 2

3

re L

mec2

(
dE

dx

)2

=

= 2

3

2.8 × 10−15 m · 104 m
0.511MeV

· 400MeV2

m2
= 1.5 × 10−8 MeV (3.96)

For the case of circular collider, we can use directly Eq. (3.95) to give:

ΔEorbit = 8.8 × 10−2

(R/m)

(
E

GeV

)4

MeV = 8.8 × 10−2

104
(100)4 = 880MeV (3.97)

Hence, we find that the ratio between the two energy losses is equal to

ΔELINAC

ΔEorbit
≈ 2 × 10−11. (3.98)

If the accelerated were a proton, Eqs. (3.95) and (3.96) would give

{
ΔELINAC = 8.0 × 10−10 MeV

ΔEorbit = 7.8 × 10−11 MeV
⇒ ΔELINAC

ΔEorbit
≈ 10, (3.99)

hence the LINAC acceleration would result in a larger energy loss.
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Suggested Readings

The master reference for this problem is the classical textbook on electrodynamics
by Jackson [14].

Bando n. 1N/R3/SUB/2005

Problem 3.14 What is the ratio between the power radiated by a LHC proton and
en electron at LEP-I? And between the latter and an electron at DAΦNE?

Solution

Refering to Eq. (3.93), the ratio between the power emitted by beam/accelerator A
and the power emitted by a different beam/accelerator B is given by:

PA
PB

=
(
EA

EB

)4 (mB

mA

)4 ( RB

RA

)2

(3.100)

The CERN accelerators LEP-I and the LHC are hosted by the same tunnel of length
L ≈ 27 km. The former used to collide electrons/positrons of energy E ≈ 45GeV,
while the latter collides protonswith amaximumbeamenergy of 7 TeV.TheDAΦNE
collider located at the Frascati Laboratories collides electrons and positrons at an
energy of about E = mφ/2 = 510MeV and consists of two circular rings of length
L ≈ 100m. Therefore:

power ratio =
{(

45GeV
7TeV

)4 ( 938MeV
0.511MeV

)4 ≈ 2 × 104 LEP-I/LHC(
45GeV
510MeV

)4 ( 100m
27 km

)2 ≈ 830 LEP-I/ DAΦNE
(3.101)

Energy supply and heat dissipation at LEP were one of the main challenge and
ultimately limited the energy reach of LEP-II, see also Problem3.5.

Suggested Readings

More information on the electron synchrotron DAΦNE, hosted by the LNF, can be
found in Ref. [15]

Bando n. 18211/2016

Problem 3.15 How does the power emitted by a relativistic particle of energy E and
mass m moving in a circular orbit depend on the ratio E/m? Discuss an application
or a consequence of this energy emission.

Solution

The power emitted by a charged particlemoving along a circular trajectory in the form
of syncrotron radiation is given by Eq. (3.93). In particular, the emitted power scales
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like ∼ (E/m)4. Because of this scaling law, for a fixed radius R and beam energy
E , it is more expensive to maintain closed orbits for light particles, like electrons or
positrons, rather than for heavier ones, like protons or ions. The challenge is twofold:
on the one hand, the lost power needs to be supplied at each turn as to maintain the
particle orbit at the ring radius R. This is normally achieved by RF cavities, whose
accelerating gradients are however limited in practice by power consumption. On the
other hand, the radiation emitted by the particle needs to be removed by a cooling
system. The latter can become challenging for accelerators operated at cryogenic
temperatures (e.g. the LHC).

On the positive side, the enhanced emission of syncrotron radiation by lighter
particles finds technological applications, e.g. for the production of syncrotron light
as a diagnostic tool (like X-ray spectroscopy). Another advantage of syncrotron
radiation is the natural development of a beam polarisation orthogonal to the orbital
plane [14] and a reduced beam energy spread, which make electron beams appealing
for a number of research applications.

Suggested Readings

The synchrotron radiation is discussed in detail in Chap.14 of Ref. [14]. For a refer-
ence on beam polarisation at LEP and its applications, see e.g. Ref. [16].

Bando n. 5N/R3/TEC/2005

Problem 3.16 What is the role of a magnetic quadrupole in an accelerator?

Discussion

Amagnetic quadrupole can be obtained by four dipoles, rotated by 90◦ one from the
other, and with alternated polarities (e.g. N-S-N-S). If the dipoles are aligned along
the bisectrix of the x–y plane, symmetry dictates the magnetic field and Lorentz
force experienced by a charged particle moving along the z-direction at the centre of
the quadrupole to given by:

{
Bx (x, y) = ∂By

∂x y

By(x, y) = ∂By

∂x x
⇒

{
Fx (x, y) = − q|p|

mγ

∂By

∂x x

Fy(x, y) = + q|p|
mγ

∂By

∂x y
(3.102)

where the derivatives are computed at the centre of the quadrupole. The quadrupole
strength is defined as

K ≡ 1

|B|ρ
∂By

∂x
, (3.103)

which is the field derivative normalised to the beam rigidity |B|ρ. Equation (3.102)
implies that the force exerted by a quadrupole is focusing in one direction and de-
focusing on the orthogonal direction, depending on the sign of the derivative, or,
equivalently, of the quadrupole strength. It can be proved that a series of identical
quadrupoles of length �, but of alternated polarity, i.e. rotated by 90◦, guarantees
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Fig. 3.7 Example of a FODO cell hosted at the LNF site: a magnetic dipole is followed by a pair
of quadrupoles with alternated polarity, and by a RF cavity

stability to the beam provided that the distance between two quadrupoles is less than
2 f , where f = (� K )−1 is the focal length of the quadrupole (strong focusing). The
basic element of this lattice is called a FODO cell, since it consists of a focusing (F)
and defocusing (D) quadrupole, separated by a region of no drift (O), for example
provided by a dipole, see Fig. 3.7.

Modern synchrothrons are built upon the principle of strong focusing.

Solution

Owing to the focusing/defocusing property of quadrupole fields, see Eq. (3.102),
the latter find application as the building bricks of the magnetic lattice needed to
maintain the beams in stable circular orbits. Another application of quadrupoles is
as the last beam focusing elements in the proximity of the interaction point, where
the minimum beam size is usually desired.

Suggested Readings

For an introduction to the physics of accelerators, the reader is addressed to Ref. [17].
See also Sect. 30 of Ref. [3].

Bando n. 5N/R3/TEC/2005

Problem 3.17 Define the emittance of a beam. What is the normalised emittance
εn? What is the relation between emittance and brightness?

Discussion

Themotion of a particle of momentum |p| and charge q, moving in a circular collider
whose lattice consists of a series of focusing/defocusing and dipole elements, can
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be described the terms of the displacements x , y, and z with respect to the ideal
trajectory (a circle of radius ρ). Since these displacements are very small compared
to the radius ρ, the problem can be linearised, resulting in a system of differential
equations, which are instances of Hills equation. The co-rotating reference frame
moves along the ideal trajectory and the position of the centre is parametrised by
the path length variable s. The x-coordinate is usually taken as the outgoing radial
direction of the co-rotating frame, the y-coordinate as the vertical direction, and the
z-direction is tangent to the ideal trajectory. The linearised equations read as [3]

⎧
⎪⎨
⎪⎩

x ′′ + Kx (s) x = 0, Kx (s) = + 1
|B|ρ

∂Bz

∂x + 1
ρ2

y′′ + Ky(s) y = 0, Ky(s) = − 1
|B|ρ

∂Bz

∂x

z′ + x/ρ = 0

(3.104)

where the quadrupole strength K of Eq. (3.103) has been used to account for the
focusing/defocusing effect of quadrupoles,ρ is the radius of curvature of the ideal tra-
jectory, and |B| is the field intensity of the dipoles. The first two equations in (3.104)
can be proved as follows. Consider for example the y displacement. When the par-
ticle moves inside the quadrupole along an infinitesimal length ds, the bending
angle (3.43) along y is given by:

dθy = d

(
dy

ds

)
= (∂x Bz y) · ds

|B| ρ ≡ −Ky y ⇒ y′′ + Ky y = 0 (3.105)

where the magnetic field component in the y direction is given by Eq. (3.102).
For the x displacement, a similar equation hold with inverted sign of K , as to re-
flect the opposite behaviour of quadrupoles along orthogonal directions. Even in the
absence of quadrupoles, the transverse motion along x features equilibrium oscil-
lations around the ideal trajectory with wavenumber ρ. For example, consider the
case that the trajectory differs from the ideal one by a constant displacement δ: the
x displacement as a function of s is a projection of the displacement along a ro-
tating radial vector: x = |δ| cos(s/ρ + φ0), or in terms of infinitesimal variations,
d(dx/ds) = −(x ds)/ρ2. The equation for the longitudinal motion can be instead
proved by noticing that a displacement x from the ideal orbit will make the particle
position along z move forward, or, backward, by −(x/ρ) ds, hence z′ = −x/ρ.

The transverse motion consists of two decoupled equations. The solution can be
written in the form

x(s) = √
εx βx (s) cos(ψx (s)), (3.106)

with : ψ ′
x = 1

βx
, and 2βx β ′′

x − β ′2
x + 4β2

x Kx (s) = 4, (3.107)

and similar for y. Here, εx is constant and is fixed by the initial conditions. The
amplitude functions βx,y are periodic functions of s of period 2πρ. The play both the
role of an amplitude envelope along the circumference (the maximum displacement
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is bound by |x | ≤ maxs
√

εx βx (s)), and of local wavelength. The phase ψx at the
position s along the circumference is given by

ψx (s) = ψ0
x +

∫ s

0

ds

βx
, (3.108)

After completing an integer number or turns, i.e. s = k 2πρ, the phase has advanced
by a number which is in general not a multiple of 2π , thus implying that the particle
won’t necessarily find itself in the same displaced position after a full turn. After
some algebra, one can easily show that

[
1 + (−β ′

x/2)
2

βx

]
x2 + 2

(
−β ′

x

2

)
x x ′ + βx x

′2 = εx (3.109)

In terms of the phase-space variables (x, x ′), the motion is takes place along an
ellipse of area πε, whose principal axes are continuously stretched and rotated as s
changes. In particular, when β ′

x = 0, the equation takes the nice form:

β ′
x = 0 ⇒ x2

βx
+ βx x

′2 = εx , (3.110)

i.e. the semi-axes have lengths Δx = √
εx βx and Δx ′ = √

εx/βx . This condition is
for example realised at the interaction points of circular colliders as to ensure the
smallest beam sizes in the transverse plane.

Solution

When the beam is made of N � 1 non-interacting particles, each particle will obey
Eq. (3.104)with a value of the invariant εx,y and of the initial phaseφ0

x,y sampled from
a statistical distribution. IUnder the assumption that the beam dynamics is described
by a conserved Hamiltonian, which is the case if the beam particles are weakly
interacting and if the beam radiation is negligible, the Hamiltonian flow conserves
the phase-space volume

∫
px,y dqx,y , where (p, q) are coniugate variables (Liouville

theorem). Since the latter is proportional to
∫
dx x ′ and

∫
dy y′, respectively, the area

ε
x,y
0 in the displacement-divergence plane that contain a certain fraction of the beam
particles, is also a time-invariant. The latter is called beam emittance, and ismeasured
in units of (mmmrad). If the particle distribution in these planes is gaussian, one can
define the transverse beam sizes σx,y as the lengths that contain a certain number of
standard deviations of the phase-space distribution. For example, for a 87% fraction
of the beam particles, one has:

ε
x,y
0 = (2 σ 2

x,y)

βx,y
, (3.111)

where now σx,y give the beam sizes in the displacement spaces (x, y).
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In the relativistic limit, Liouville theorem states that
∫
p dq ∼ βγ

∫
dx x ′ is con-

served, therefore the beam emittance decreases like γ −1 for γ � 1. The normalised
emittance is the true time-invariant along the accelerator chain, and can be defined
as the beam emittance for γ = 1, i.e.:

εn = γ ε0. (3.112)

When a beam is created and injected into the accelerating stage, its emittance is εn .
After the acceleration, the emittance gets shrunk by a factor γ . The brightness B of
a beam is defined as the particle multiplicity per unit of emittance, i.e.:

B = N

ε0
. (3.113)

Suggested Readings

For an overview on the physics of accelerators, the reader is addressed to Ref. [17].
A summary of the relevant notation can be found in the dedicated PDG review [3].

Problem 3.18 Determine the functional form of the amplitude function β(s) in a
region free of magnetic fields around the interaction point of a circular collider.

Solution

As discussed in Problem 3.17, in order to maximise the luminosity, the beam optics
is adjusted such that the amplitude function is at a minimum at the interaction point
(IP). We chose the coordinate system such that s = 0 corresponds to the IP position,
so that β ′(0) = 0. From Eq. (3.106), we can write the ODE for β(s) in a region free
of magnetic field by setting K (s) = 0. For simplicity of notation, we suppress the
coordinate index. We then have:

2ββ ′′ − β ′2 − 4 = 0. (3.114)

To solve this ODE, we make the ansatz:

β(s) = β∗ + α∗s2, (3.115)

where β∗ = β(0). Actually, the α∗ parameter is not independent from β∗, since
Eq. (3.114) with the boundary condition β ′(0) = 0 implies that β ′′(0) = 2/β∗, hence
α∗ = 1/β∗. Equation (3.114) then becomes:

2

(
β∗ + s2

β∗

)
2

β∗ −
(
2s

β∗

)2

− 4 = 0. (3.116)
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Hence, the solution is indeed given by:

β(s) = β∗ + s2

β∗ , (3.117)

which is a parabola in s, whose constant terms and curvature at the origin are not
independent.

Discussion

Wecan notice that at large distance from the IP, the amplitude function grows quadrat-
ically with s, while the beam RMS increases linearly, see Eq. (3.111). The increase
of the transverse beam size away from the IP is called hourglass effect. By reducing
the amplitude function at the interaction point (β∗), the beam size at the centre will
shrink, while the size at the boundary of the luminous regionwill increase proportion-
ally, thus reducing its contribution to the overall luminosity. The net effect depends
on how the longitudinal beam size compares to β∗. An an example, the design β∗ at
the LHC interaction points is about 0.5 m.

Problem 3.19 Consider a LHC proton beam at
√
s = 14 TeV. Estimate the size of

the proton transverse momentum at the interaction point of the ring by assuming
εn = 3.75µm and β∗ = 0.55m. How does this number compare with the typical
quark transverse momentum of order �/2rp ∼ 2.5GeV? And with the transverse
momentum due to a beam-beam crossing angle μ = 300µrad?

Solution

The interaction points correspond to local minima of the amplitude function β(s).
From Eq. (3.110), it follows that the phase-space points of the beam particles in the
displacement-divergence plane lie along ellipses with semiaxes

√
ε β∗ and

√
ε/β∗,

respectively. The divergence at the IP is maximal and is given by

x ′ =
√

ε

β∗ =
√

εn

γ β∗ ≈
√

3.75µm

7 × 103 · 0.55 m
= 3 × 10−5, (3.118)

corresponding to pT = x ′|p| ≈ 200MeV, i.e. approximately one order of magnitude
smaller than the typical transverse momentum of bounded quarks inside the proton.
When the two beams have a finite crossing angle φ (assuming an angle of φ/2 of
each beam direction with respect to the z-axis), the proton transverse momentum is
given by |p|φ/2 ≈ 1 GeV.

Bando n. 5N/R3/TEC/2005

Problem 3.20 What are the betratron oscillations?
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Solution

The betratron oscillation, thus called because they were first observed in betratrons,
see Problem 3.22, are the oscillation of beam particles in the transverse plane around
the reference trajectory, i.e. the trajectory of the ideal particle that undergoes a per-
fectly circular and closed path, see Problem 3.17. These oscillations are described
by the amplitude functions βx,y(s), which provides an envelope to the particle dis-
placements from the ideal trajectory and plays the role of a local wavelength of the
transverse motion. The number of cycles in the two transverse directions per turn,

Qx,y = 1

2π

∮
ds

βx,y(s)
, (3.119)

are called beam tunes. If the beam tunes are rational numbers, i.e. p Qx,y = q with p
and q integers, then the particles find themselves in the same position after a certain
number of turns. This condition is to be avoided to prevent local defects of the lattice
to sum up constructively, a situation that can cause beam instabilities.

Bando n. 13153/2009

Problem 3.21 What is the cyclotron frequency?

Solution

Th cyclotron frequency for a charged particle of massm and electric charge emoving
on a plane orthogonal to a uniform magnetic field of intensity |B| is defined as ωB =
e |B|/m. From the equation of motion of Eq. (3.32), it follows that such a particle
completes a full revolution in a time T = 2π/ω, where the revolution frequency ω

is given by:

dp
dt

= e

mγ
p × B = e |B|

m γ
|p| er ,

dp
dt

· er ≡ ω |p| = e |B|
m γ

|p| ⇒ ω = e |B|
m γ

= ωB

γ
. (3.120)

Therefore, the cyclotron frequencyωB coincides with the revolution frequencyω of a
charged particle moving in an orthogonal magnetic field, provided that the motion is
not relativistic, i.e.γ ≈ 1.At relativistic energies, the revolution frequency decreases.
This can be intuitively understood by noticing that the the length of the circumference
scales linearly with the particle momentum, see Eq. (3.40), but the velocity saturates
to c, so that the revolution period scales like ∼|p|.

Bando n. 5N/R3/TEC/2005
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Problem 3.22 Explain how the magnetic field intensity, the radiofrequency, and the
orbital radius change during the acceleration of a proton in:

1. a cyclotron;
2. a betatron;
3. a synchrotron.

Discussion

The cyclotron, betatron, and synchrotron are three different kinds of non-static circu-
lar accelerators,where chargedparticles are progressively accelerated andmaintained
in orbit by means of guide magnetic fields. Historically, the cyclotron has been the
first accelerator used for particle physics, although the idea behind the betatron is
even older (Wideröe, 1919). The synchrotron represents the historical evolution of
the cyclotron and is, as of today, the adopted solution for high-energy accelerators.

Solution

In a cyclotron, particles are accelerated by time-varying electric fields between the
faces of two D-shaped magnets, where an orthogonal and constant magnetic field
bends the particles by 180◦. The polarity of the electric field in inverted at each half-
turn. The revolution frequency is given by Eq. (3.120), hence it is approximately
independent of the particle energy for β � 1: for non-relativistic particle, the fre-
quency of the accelerating potential is constant. At higher energies, the frequency
needs to decrease in order to be always in phase with the arrival of the particle.
Furthermore, since the radius of curvature changes proportionally to the momentum,
the radius of the D-shaped magnets determines the maximum energy. Therefore, we
can summarise:

• B: constant;
• R: time-dependent, it grows linearly with the particle momentum;
• f : constant for β � 1, time-dependent otherwise.

In a betatron, time-varying magnetic fields provide both the guide and the accel-
eration. In its simplest implementation, it consists of a yoke encircled by a toroidal
beam tube of fixed radius. Particles inside the tube are accelerated by a rotational
electric field generated by the time varying magnetic field in the yoke:

∇ × E = −∂Ba

∂t
⇒ |E| = Φ̇(t)

2πR
= π R2〈|Ḃa|〉

2πR
= R

2
〈|Ḃa|〉, (3.121)

with 〈|Ḃa|〉 = 1

π R2

∫
dσ · Ḃa (3.122)

A guide field Bg orthogonal to the beam plane, will maintain the beam at a fixed
radius R provided that
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ṗ = q|Ḃg|R = q|E| = q
R

2
〈|Ḃa|〉 ⇒ |Bg| = 1

2

(
1

π R2

∫
dσ · Ba

)
(3.123)

This implies a proportion of 2 : 1 between the accelerating and guide fields. There-
fore, we can summarise:

• B: time-dependent;
• R: constant;
• f : constant.

In a synchrotron, a toroidal beam tube is immersed in a guide magnetic field gen-
erated by dipoles located all around the tube. During the acceleration stage, the beam
energy is progressively incremented by radiofrequency (RF) cavities synchronised
with the arrival of the particles. The guide field is incremented as to catch up with
the increasing beam energy. When the ultimate beam energy is reached, the field is
maintained at a constant value. Therefore, we can summarise:

• B: time-dependent, it grows linearly with the particle momentum until the maxi-
mum beam energy is reached;

• R: constant;
• f : time-dependent, it must be a multiple of the beam revolution frequency. Ap-
proximately constant for γ � 1.

Suggested Readings

For an introduction to the physics of accelerators, the reader is addressed to Ref. [17].

Bando n. 18211/2016

Problem 3.23 What are the main differences between a cyclotron and a syn-
chrotron? What factors do limit the maximum energy achievable by each of them?

Solution

The main features of cyclotrons and synchrotrons have been discussed in
Problem 3.22. In a cyclotron, the radius of the accelerated beam changes proportion-
ally with the beammomentum, the magnetic field is constant, and the radiofrequency
is approximately constant for non-relativistic particles. The maximum beam energy
is limited by the outer radius of the magnets and by the necessity of maintaining the
RF in phase with the revolution frequency. In a synchrotron, the radius if fixed, while
themagnetic field and the accelerating RF changewith time until the largest energy is
achieved. For a given radius R, the latter is mostly limited by the maximum intensity
of the guide field. For electron/positron acceleration, the limiting factor may come
instead from the synchrotron radiation, see Problem 3.13.
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Suggested Readings

For an introduction to the physics of accelerators, the reader is addressed to Ref. [17].

Bando n. 18211/2016

Problem 3.24 Discuss a way to excite wakes in plasma acceleration? What would
be the advantages of a plasma accelerator compared to traditional acceleration tech-
niques?

Discussion

Wake-field acceleration is a technique for charged particle acceleration consisting
in using the electric field induced by the passage of a moving charge (wakefield) as
driving force to accelerate a beam of particles.

Solution

Laser plasma acceleration consists in the acceleration of charged particles by the
wakefield induced by a resonant short-pulse (pulse duration of order of the plasma
frequency, see Eq. (2.22)), high-intensity laser source in an underdense plasma (ne ∼
1017 cm−3). The phase velocity of the plasma wave is approximately given by the
group velocity of the laser. The main advantage of LPA is the intense accelerating
field, which can exceed the maximum electric fields of traditional RF cavities by
about three orders of magnitude. For example, for an ambient electron density of
1017 cm−3, the accelerating plasma electric field is of order

E = 96 (ne/cm
−3)1/2 V/m ≈ 30 GV/m, (3.124)

to be compared with the RF electric fields of about 30 MV/m.
The largest accelerating gradients achievable by LPA would considreably reduce

the length and costs of the accelerating facilities. The main challenge are repre-
sented by the maximum luminosity achievable and by the overall power efficiency
(luminosity as a function of electrical input power).

Suggested Readings

The state of the art in LPA technology has been summarised in the IFCA White
Paper [18].

Bando n. 5N/R3/TEC/2005

Problem 3.25 The bremsstrahlung spectrum emitted by a X-ray tube for medical
applications features a Gaussian-like shape, with a variety of peaks superimposed.
How can you explain these peaks?

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Solution

X-ray tubes are devices where electrons are accelerated through an electric potential
and impinge on a metallic anode emitting bremsstrahlung radiation. The spectrum of
the emitted radiation is a continuous distribution, modulated at low frequency from
the absorption by dead material, featuring a number of peaks superimposed. The
latter correspond to excitation of the atomic levels of the atoms at the anode (K , L ,
M levels).

Bando n. 18211/2016

Problem 3.26 What is the highest energy of an α particle produced by a 5MV
tandem accelerator?

Discussion

The concept of Tandem accelerator was invented in order to achieve higher beam en-
ergies compared to single-ended accelerators at the same maximum terminal voltage
V . In a Tandem accelerator, negative ions of charge −e are produced at one elec-
trode, usually grounded or connected to a negative potential−VI , and are accelerated
towards the high-voltage terminal. Here, they encounter a charge stripper (usually
made of gas or of a thin carbon foil), where they get ionised, becoming positive ions
of charge +z e. At this point, they accelerate again towards another grounded elec-
trode where they are finally extracted (usually through the use of a magnet analyser).
The kinetic energy acquired by the ion when reaching the final electrode is therefore

T = e VI + e V + e z V = e VI + e (1 + z) V, (3.125)

where −VI is the potential of the ion source.

Solution

For a He source, the maximum ion charge after the stripper is z = +2. From
Eq. (3.125) with V = 5 MV and VI = 0, we therefore obtain a maximum energy

Tmax = 3 e V = 15 MeV, (3.126)

hence three times large than by using a single-ended accelerator at the same terminal
voltage.

Suggested Readings

An instructive overview on electrostatic accelerators and on the concept of Tan-
dem acceleration is presented in the lectures [19]. For more detailed information
on negative ion beams, charge strippers, and technological aspects of electrostatic
accelerators, the reader is addressed to Ref. [11].
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3.3 Luminosity and Event Rates

The concept of luminosity is of cardinal importance in accelerator and collider
physics. As discussed in Sect. 1.3, the luminosity of a collider determines the event
rate. More specifically, the luminosity is defined as the coefficient of proportionality
between the measured event rate and the cross section. Assuming that the interact-
ing particles are prepared in beams of fixed momentum, as it is usually the case at
colliders, Eq. (1.288) implies:

L (t) = vrel

∫
dr [n1(r, t) n2(r, t)] (3.127)

where vrel is the relative velocity, see Problem 1.11, and n1,2(r, t) are the particle
densities of the colliding beams. The integration is performed over the volume around
the interaction point. We can specialise Eq. (3.127) to a few special cases.

Continuous Beam Against a Fixed Target

Let’s assume that a direct current beam (1) with particle velocity v1 is directed onto
a fixed target (2), see Fig. 3.8. We chose the reference frame such that the beam
direction is aligned along the z-axis, while the x, y axes span the transverse plane.
The beam distribution along z is assumed to be uniform. The target is at rest and
is characterised by a particle distribution n2(r). The relative velocity is vrel = |v1|.
Equation (3.127) becomes

L = |v1|
∫

dx dy dz n1(x, y) n2(x, y, z) = |v1|
∫

dx dy n1(x, y) δ2(x, y) =

=
∫

dΦ1(x, y) δ2(x, y), (3.128)

where δ2(x, y) is the surface density of the target at the point (x, y) while dΦ1 is
the beam flux (number of particles per unit time) across an infinitesimal surface
element dx dy centred around (x, y). For the special case of uniform target density
and uniform beam flux over a limited area, Eq. (3.134) becomes:

L = Φ1 δ2, (3.129)

Fig. 3.8 Illustration of a
continuous beam of density
n1(r) and velocity v1
colliding against a fixed
target of density n2(r) v1 n1(r)

n2(r)

x

z

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Fig. 3.9 Illustration of a
bunched beam of bunch
density n1(r), velocity v1,
colliding with a fixed target
of density n2(r) with a
collision frequency fcoll

v1 n1(r)

n2(r)

x

z

|v1|f−1
rev

where Φ1 is the beam flux across the surface of minimum area between the beam
and the target transverse size. This result is in agreement with Eq. (1.290).

Bunched Beam Against a Fixed Target

Let’s assume that a bunched beam (1) with bunch velocity v1 is directed against a
fixed target (2), see Fig. 3.9. We further assume that the bunches are equally spaced
in time, so that the frequency fcoll of bunch collision with the target is a constant.
Equation (3.127) becomes

L (t) = |v1|
∫

dx dy dz n1(x, y, z, t) n2(x, y, z) (3.130)

Strictly speaking, the luminosity here is a function of time. For example, it’s zero
before any bunch collision, and non-zero during the collision. We can however re-
define the luminosity as the time average of Eq. (3.127) over many bunches Nb, i.e.

L ≡ fcoll
Nb

∫ Nb f −1
coll

0
dt L (t) = fcoll|v1|

∫
dx dy dz dt n1(x, y, z, t) n2(x, y, z) =

= fcoll

∫
dx dy dz ds n1(x, y, z, s) n2(x, y, z). (3.131)

The second equality holds if the beam structure is periodic with time period f −1
coll:

in this case, it suffices to integrate the particle density over a time large enough to
contain the full bunch crossing through the target. In the last equality, the variable
s = |v1| t has been introduced to make the integration variables homogeneous. Since
the motion takes place along the z-axis, the density n1 must be a function of z − s,
so that:

L = fcoll

∫
dx dy

(∫
ds n′

1(x, y, z − s)

)(∫
dz n2(x, y, z)

)

= fcoll

∫
dx dy δ1(x, y) δ2(x, y) (3.132)

For the special case of uniform target and bunch density over a limited area,
Eq. (3.140) becomes:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Fig. 3.10 Illustration of two
bunched beams of bunch
density n1(r) and n2(r), and
velocities v1 and v2,
colliding head-on with a
collision frequency fcoll

v1 n1(r) n2(r)

x

z

|v1|f−1
coll

v2

s = 0

L = fcoll N1 δ2, (3.133)

where N1 is the number of particles per bunch. Again, if the transverse size of the
target is smaller than the bunch, one should consider only those particles inside the
smallest of the two areas.

Bunched Beam Against a Bunched Beam

Let’s assume that two bunched beams (1) and (2) with bunch velocity v1 and v2
collide one against the other, see Fig. 3.10. We further assume that the bunches are
equally spaced in time, so that fcoll is a constant. Since the beam structure is periodic,
we shall consider the time integral ofL (t) for two bunches, and divide the result by
the time interval between two subsequent bunch crossings. Writing explicitely vrel
in terms of the beam velocities:

L = fcoll

√
(v1 − v2)2 − (v1 × v2)2

c2

∫
dx dy dz dt n1(r, t) n2(r, t), (3.134)

We can further simplify the expression by introducing the crossing angle φ, defined
such that the angle between the two velocities is π − φ. We further assume that the
beam are relativistic, so that |v1| = |v2| ≈ c. With this choice:

vrel = c

√(
2 cos

φ

2

)2

− sin2 φ = c (1 + cosφ) = 2c cos2
φ

2
(3.135)

For back-to-back collisions, φ = 0 and we obtain the expected result vrel = 2c.
Putting everything together, we have:

L = 2 cos2
φ

2
fcoll

∫
dx dy dz ds n1(r, s) n2(r, s), (3.136)

where we have again introduced the variable s = c t .

Integrated Luminosity

Since the statistical significance of a measurement grows like
√
N , at the end of the

day what matters for the physics is the integrated luminosity defined as:
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Lint =
∫ Trun

0
dt L (t) ≡ Trun〈L 〉, (3.137)

where the integration is performed over the full run time Trun. The latter is limited by
other contingent factors, like the availability of the accelerating facility for the desired
research program, power supply limitations, turn-around vs beam life times, etc. For
this reason, the maximisation of 〈L 〉 to reduce the overall run time is an important
achievement for an accelerator, and much effort is usually devoted to this task.

This section collects a number of exercises that aim at familiarising with the
concept of luminosity. Particular emphasis is devoted to the luminosity of circular
collider, where a number of exact calculations can be performed for several cases of
interest.

Problems

Problem 3.27 Prove that the luminosity of a circular collider where two equally
spaced and bunched beams with Nb bunches per beam, revolution frequency frev,
bunch populations N1 and N2, Gaussian beam profile in three dimensions with stan-
dard deviations σx , σy , σz , and colliding head-on along the z-direction, is given by
the formula:

L = N1 N2 frev Nb

4π σx σy
. (3.138)

Generalise this expression to the case where the standard deviations of the two beams
are different.

Solution

The luminosity can be computed from Eq. (3.136). To parametrise the bunch den-
sities, we chose the reference frame such that the bunches move along the z-axis,
while the transverse plane is spanned by the x- and y-axes. We further assume that
the centre of each bunch passes through the origin at the time s = 0.With this choice:

⎧⎪⎨
⎪⎩

ρ1(x, y, z, s) = (2π)
− 3

2

σxσyσz
exp

[
− x2

2σ 2
x

− y2

2σ 2
y

− (z−s)2

2σ 2
z

]

ρ2(x, y, z, s) = (2π)
− 3

2

σxσyσz
exp

[
− x2

2σ 2
x

− y2

2σ 2
y

− (z+s)2

2σ 2
z

] (3.139)

Assuming φ = 0 and relativistic bunches, the integral at the right-hand side of
Eq. (3.136) can be computed explicitely yielding:
∫∫

ds dr [ρ1(r, s) ρ2(r, s)] =

= (2π)−3

σ 2
x σ 2

y σ 2
z

∫
dx exp

[
− x2

σ 2
x

]∫
dy exp

[
− y2

σ 2
y

]∫
dz exp

[
− z2

σ 2
z

]∫
ds exp

[
− s2

σ 2
z

]

= (2π)−3

σ 2
x σ 2

y σ 2
z

(
√

πσx )(
√

πσy)(
√

πσz)
2 = 1

8π σx σy
(3.140)
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Equation (3.136) then becomes:

L = 2 Nb frev N1 N2

(
1

8π σx σy

)
= N1 N2 frev Nb

4π σx σy
. (3.141)

It is interesting to notice that under these assumptions, the luminosity is indepen-
dent of the bunch resolution along the direction of collision. Using Eqs. (3.111)
and (3.113), we can equivalently write the luminosity in a form that makes explicit
its dependence on the accelerator parameters:

L = γ
N1 N2 frev Nb

4π
√

β∗
x εnx

√
β∗
y εny

. (3.142)

Let us now consider the more generic case that the beam dimensions are different.
The integral of Eq. (3.140) now becomes:

∫∫
ds dr [ρ1(r, s) ρ2(r, s)] = (2π)−3

(σ1 xσ2 x )(σ1 yσ2 y)(σ1 zσ2 z)
×

∫
dx exp

[
−1

2

(
1

σ 2
x 1

+ 1

σ 2
x 2

)
x2
] ∫

dy exp

[
−1

2

(
1

σ 2
y 1

+ 1

σ 2
y 2

)
y2
]

×
∫∫

dz ds exp

[
−1

2

(
1

σ 2
z 1

+ 1

σ 2
z 2

)(
z2 − 2zs

(
σ 2
2 z − σ 2

1 z

σ 2
2 z + σ 2

1 z

)
+ s2

)]
=

= (2π)− 3
2√

σ 2
1 x + σ 2

2 x

√
σ 2
1 y + σ 2

2 y

√
σ 2
1 z + σ 2

2 z

×

∫
ds exp

[
−1

2

σ 2
1 z + σ 2

2 z

σ 2
1 zσ

2
2 z

(
1 − (σ 2

1 z − σ 2
2 z)

2

(σ 2
1 z + σ 2

2 z)
2

)
s2
]

=

= 1

23/2π3/2
√

σ 2
1 x + σ 2

2 x

√
σ 2
1 y + σ 2

2 y

√
σ 2
1 z + σ 2

2 z

√
π

2

√
σ 2
1 z + σ 2

2 z =

= 1

4π
√

σ 2
1 x + σ 2

2 x

√
σ 2
1 y + σ 2

2 y

. (3.143)

Putting everything together, we get:

L = N1 N2 frev Nb

2π
√

σ 2
1 x + σ 2

2 x

√
σ 2
1 y + σ 2

2 y

, (3.144)

which reduces to Eq. (3.142) when σ1 x = σ2 x and σ1 y = σ2 y . Again, we find that the
luminosity is independent of the bunch RMS along z. This could have been predicted
a priori, since
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L ∼ 1

σ1 zσ2 z

∫∫
dz ds f

(
z − s

σ1 z

)
f

(
z + s

σ2 z

)
= 1

2

(∫
dξ f (ξ)

)2

, (3.145)

where we have just performed the change of variables ξ = (z − s)/σ1 z and ξ = (z +
s)/σ2 z , with Jacobian (σ1 zσ2 z)/2. The integral at the right-hand side of Eq. (3.145)
is clearly independent of σi z .

Suggested Readings

The lecture notes [20] represent a valid starting point for introducing the concept of
luminosity. The technical note [21] contains a number of useful formula.

Problem 3.28 Determine the luminosity of a circular collider where two equally
spaced and bunched beams with Nb bunches per beam, revolution frequency frev,
bunch populations N1 and N2, and rectangular shape in the (x, y, z) dimensions of
size a, b, and c, collide head-on along the z-direction.

Solution

The luminosity is given by Eq. (3.136) with the choice:

{
ρ1(x, y, z, s) = 1

a b c I (x)[− a
2 ,+ a

2 ] I (y)[− b
2 ,+ b

2 ] I (z)[− c
2 +s,+ c

2 +s]
ρ2(x, y, z, s) = 1

a b c I (x)[− a
2 ,+ a

2 ] I (y)[− b
2 ,+ b

2 ] I (z)[− c
2 −s,+ c

2 −s]
(3.146)

where I is the index function. The integral at the right-hand side of Eq. (3.136) can
be computed explicitely yielding:

∫∫
ds dr [ρ1(r, s) ρ2(r, s)] =

= 1

(a b c)2

∫
dx I (x)[− a

2 ,+ a
2 ]
∫

dy I (y)[− b
2 ,+ b

2 ]
∫∫

ds dz I (z)[− c
2 +s,+ c

2 +s] I (z)[− c
2 −s,+ c

2 −s] =

= 1

a b c2

∫ 0

− c
2

ds
[(

s + c

2

)
−
(
−s − c

2

)]
+
∫ − c

2

0
ds

[(
−s + c

2

)
−
(
s − c

2

)]
=

= 1

a b c2

(
c2

2

)
= 1

2 a b
. (3.147)

We can express the beam sizes in terms of the RMS along the x and y components
through σx = a/

√
12 and σy = b/

√
12, yielding:

L = 2N1 N2 frev Nb

2(
√
12)2σxσy

= N1 N2 frev Nb

12 σxσy
(3.148)

A comparison with Eq. (3.142) shows that the luminosity for identical rectangular
beams is again independent of the bunch size along z, and differs from the result of
Gaussian bunches by about 4.5%.
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Discussion

The fact that the luminosity formula (3.142), that was obtained under the assumption
of Gaussian profiles, agrees numerically with the rectangular distribution, is not a
mere accident. Indeed, it can be proved analytically [22] that this result holds for
several functional forms, see Problem 4.4. In particular, the value of the functional
L

√〈x2〉 is at a minimum for a parabolic distribution centred around x = 0 and
defined on a compact support. Since most of the reasonable assumptions for ρ(x)
are of this functional form (e.g. a Gaussian, a triangle, a rectangle, etc.), one can
expect that the value ofL

√〈x2〉 will not differ much from the result obtained under
the assumption of a parabolic distribution, which is 3/5

3
2 = 0.268, and indeed one

finds variations not larger than 5%, see e.g. Table10 of Ref. [22] for some numerical
results.

To summarise, Eq (3.142) represents a valid approximation for reasonable dis-
tributions in the transverse plane, provided that σ is replaced by the appropriate
RMS.

Suggested Readings

The goodness of the RMS as a measure of the beam size in the calculation of lumi-
nosities has been studied in detail in Ref. [22].

Problem 3.29 Consider the case of two identical bunched beams with Gaussian
profile that collide with a crossing angle angle φ � 1. Determine how the luminosity
gets reduced with respect to the zero crossing angle. Evaluate the correction factor
using the LHC design parameters φ = 285µrad, σx = 16.7µm, and σz = 8.8 cm.

Solution

Without loss of generality, we can assume that that the angle φ between the two
beams is in the xz-plane, see Fig. 3.11. The luminosity is given by Eq. (3.136) with
the choice:

⎧⎨
⎩

ρ1(x, y, z, s) = (2π)
− 3

2

σxσyσz
exp

[
− x2+φ/2

2σ 2
x

− y2

2σ 2
y

− (z+φ/2−s)2

2σ 2
z

]

ρ2(x, y, z, s) = (2π)
− 3

2

σxσyσz
exp

[
− x2−φ/2

2σ 2
x

− y2

2σ 2
y

− (z−φ/2+s)2

2σ 2
z

] (3.149)

Fig. 3.11 Illustration of two
bunched beams of the same
bunch density n(r) colliding
at an angle π − φ

v1
n1(r) n2(r)

x

z

v2s = 0

φ
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Here, we have indicated by x±φ/2 and z±φ/2 the rotated of (x, z) by ±φ/2 around
the y-axis, i.e.

{
z+φ/2 = +z cos φ

2 + x sin φ

2

x+φ/2 = −z sin φ

2 + x cos φ

2

,

{
z−φ/2 = +z cos φ

2 − x sin φ

2

x−φ/2 = +z sin φ

2 + x cos φ

2

(3.150)

The integrand at the right-hand side of Eq. (3.136) can be simplified to:

exp

[
− 1

2σ 2
x

[(
x cos

φ

2
− z sin

φ

2

)2

+
(
x cos

φ

2
+ z sin

φ

2

)2
]

− y2

σ 2
z

]
×

exp

[
− 1

2σ 2
z

[(
z cos

φ

2
+ x sin

φ

2
− s

)2

+
(
z cos

φ

2
− x sin

φ

2
+ s

)2
]]

=

= exp

[
−x2

(
cos2 φ

2

σ 2
x

+ sin2 φ

2

σ 2
z

)
− z2

(
sin2 φ

2

σ 2
x

+ cos2 φ

2

σ 2
z

)
− s2

σ 2
z

+ 2xs sin φ

2

σ 2
z

]
.

(3.151)

The integration over s gives:

∫
ds exp

[
− s2

σ 2
z

+ 2xs sin φ

2

σ 2
z

]
= √

πσz exp

[
x2 sin2 φ

2

σ 2
z

]
. (3.152)

Restoring all the constants, and integrating over x , y, and z:

L = 2N1 N2 frev Nb cos
2 φ

2

(2π)−3

σ 2
x σ 2

y σ 2
z

√
πσy

√
πσz×

×
∫

dx dz exp

[
−x2

(
cos2 φ

2

σ 2
x

)
− z2

(
sin2 φ

2

σ 2
x

+ cos2 φ

2

σ 2
z

)]
=

= N1 N2 frev Nb cos φ

2

4πσy

√
σ 2
z sin

2 φ

2 + σ 2
x cos2

φ

2

= N1 N2 frev Nb

4πσx σy

1√
1 + σ 2

z

σ 2
x
tan2 φ

2

. (3.153)

If we now make the assumption that φ � 1 and that σz � σx , which is typically the
case at colliders, then the result can be further simplified to give:

L = N1 N2 frev Nb

4πσx σy

[
1 +

(
σz

σx

φ

2

)2
]− 1

2

. (3.154)

Even though the crossing angle can be rather small in absolute scale (for example, at
the LHC, φ ≈ 3 × 10−4 rad), the other angle that sets the reference scale is the ratio
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σz/σx , which can be large. The adimensional quantity
(

φ

2
σz

σx

)
is often referred to as

Piwinski angle. For example, using the LHC design parameters, we have:

[
1 +

(
7.7 cm

16.7µm

285 × 10−6

2

)2
]− 1

2

= 0.835, (3.155)

i.e. the luminosity gets reduced by about 16% compared to the case of perfectly
head-on collisions.

Suggested Readings

See the lecture notes [20] for an overview on the subject.

Problem 3.30 Consider the beam setup of Problem 3.29, and assume that the beams
have an offset Δ with respect to the z-axis, as illustrated in Fig. 3.12. How does the
luminosity change as a function of the beam offset?

Solution

We can refer to Problem 3.29 for much of the discussion and for a good fraction
of the calculations. We need to modify Eq. (3.150) to include two offsets d1 and d2
along the axes orthogonal to the two beam directions, namely:

{
z+φ/2 = +z cos φ

2 + x sin φ

2

x+φ/2 = d1 − z sin φ

2 + x cos φ

2

,

{
z−φ/2 = +z cos φ

2 − x sin φ

2

x−φ/2 = d2 + z sin φ

2 + x cos φ

2

(3.156)

Clearly, if d1 = d2 nothing should happen since this case corresponds to a rigid
translation of the two beams in the xz-plane. We can therefore expect the result to
depend only on the relative offset Δ = |d1 − d2| Referring to Eq. (3.151), we can
easily see that the integration over s and y is unaffected. After collecting all terms
that depend on x and z, the integrand is proportional to:

Fig. 3.12 Illustration of two
bunched beams of the same
bunch density n(r) colliding
at an angle π − φ and with
an offset Δ

v1
n1(r)

n2(r)

x

z

v2s = 0

φ

Δ
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exp

⎡
⎣−

(
x
cos φ

2

σx
+ d1 + d2

2σx

)2

− (d2 − d1)2

4σ 2
x

⎤
⎦×

exp

[
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(
sin2 φ

2

σ 2
x

+ cos2 φ

2

σ 2
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)
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2

σ 2
x
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]
(3.157)

The integration over x is straightforward and gives the same contribution as in
Eq. (3.153). The integration over z gives the offset-dependent term in addition to
the Piwinski term. We can therefore use the result Eq. (3.154) and multiply the
right-hand side by the offset-dependent corrections to give:

L = N1 N2 frev Nb

4πσx σy

[
1 +

(
σz

σx
tan

φ

2

)2
]− 1

2

exp

⎡
⎢⎣ Δ2 sin2 φ

2

4σ 4
x

(
sin2 φ

2
σ 2
x

+ cos2 φ

2
σ 2
z

) − Δ2

4σ 2
x

⎤
⎥⎦ .

(3.158)

In particular, for φ � 1, the luminosity depends on the displacement like:

L = L0 exp

[
− Δ2

4σ 2
x

]
, (3.159)

where L0 is the luminosity for perfectly head-on and aligned collisions.

Discussion

From Eq. (3.159), it follows that the counting rate for any reaction occurring when
the two beams interact will be given by

dN

dt
= dN0

dt
exp

[
− Δ2

4σ 2
x

]
, (3.160)

Hence, one can directly measure the transverse RMS σx by recording the counting
rates at different values of Δ during a beam scan. This method, known as Van der
Meer scan, was first suggested by S. van der Meer at the CERN Intersecting Storage
Ring [23]. As of today, it represents the principal method for an absolute luminosity
calibration at hadron colliders.

Problem 3.31 In a fixed target collider, a monochromatic and continuous beam
with flux Φin passes through a target at rest of unknown particle density. Interactions
between the beam and the target remove beam particles. Let the cross section for
such destructive absorbtion be σ0. Determine the luminosity of the collider from the
beam flux measured before and after the target.



226 3 Accelerators and Experimental Apparatuses

Solution

Let’s denote the beam velocity by v1 and the beam density by n1(x, y, z). The
assumption of stationary density is clearly valid if the linear density along the beam
direction is constant. Equation (3.127) can be written as

L = |v1|
∫

dx dy dz n1(x, y, z) n2(x, y, z). (3.161)

The number of particles removed from the beam in an infinitesimal volume centred
around the point (x, y, z) by the interaction with the target is:

dn1 = −n1(x, y, z) n2(x, y, z)σ0︸ ︷︷ ︸
1/λ0

dz. (3.162)

Plugging Eq. (3.162) into (3.161), we get:

L = − 1

σ0

∫
dx dy d(|v1|n1) = − 1

σ0

∫
dΦ1 = Φin − Φout

σ0
, (3.163)

where we have used the fact that J1(r) = |v1|n1(r) is the beam flux density, and J1 ·
(dx dy) is the infinitesimal flux across an area dx dy. In particular, if the interaction
responsible for the beam absorbtion is the same that produces the signal events, we
get the pretty intuitive result:

dN

dt
= L σ0 = Φin − Φout, (3.164)

i.e. the observed event rate is equal to the flux absorbed from the beam. For the case
of a uniform target of thickness d, the flux decreases as a function of z according to
an exponential law:

Φ(z) = Φin exp [−n2 σ0 z] , (3.165)

see e.g. Problem 2.14. The luminosity is therefore given by:

L = Φin

σ0

(
1 − e−n2 σ0 d

) ≈ Φin n2 d (3.166)

where the last approximation is valid for d much smaller than the interaction length,
and agrees with Eq. (3.135).

Bando n. 1N/R3/SUB/2005

Problem 3.32 Prove that the LHC luminosity is L = 1034 cm−2s−1 knowing that
the beam current is I = 0.5 A and assuming 3000 bunches per beam. How many
protons per bunch are there?What is the beam cross section in the interaction region?

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Solution

The beam current is related to the total number of protons per beam by the relation:

I = e Nb N frev ⇒ (N frev Nb) = I

e
. (3.167)

From Eqs. (3.167) and (3.138), we thus have:

L = (N frev Nb)
2

4π σx σy frev Nb
= (I/e)2

4π σx σy frev Nb
. (3.168)

The luminosity can be estimated if the collision frequency and the transverse di-
mensions of the bunches at the IP are known. The LHC revolution frequency is
frev = 11, 245 kHz. Using the design value σx,y = 16.7µm [24] for the RMS, we
have:

= (0.5 A/1.6 × 10−19 C)2

4π · (16.7 × 10−4 cm)2 · 11.245 kHz · 3000 = 0.9 × 1034 cm−2 s−1,

(3.169)

in agreement with the design value 1034 cm−2 s−1. Notice that the collision frequency
differs from the well-known value of 40 MHz. This is due to the fact that the LHC
beams contain empty sections, so that the overall collision frequency is less than the
expectation from 25 ns spaced bunches. The number of protons per bunch can be
obtained directly from Eq. (3.167):

N = I/e

f
= 0.5 A/1.6 × 10−19 C

11.245 kHz · 3000 = 0.9 × 1011. (3.170)

A more refined calculation (Nb = 2801, I = 0.584 A) would give the well-known
result of 1.15 × 1011 protons/bunch.

Problem 3.33 A circular pp collider is characterised by a luminosityL0 at the start
of the collision run. The colliding beams consist of Nb equally populated bunches
(initial bunch population N0) with revolution frequency frev, and that intersect in two
points located along the ring. Let the total pp cross section be σpp. How does L
change as a function of run time?

Solution

In order to determine the time evolution for the luminosity, we first derive the time
evolution of the bunchpopulation N , which is related to the luminosity byEq. (3.138).
Let’s denote the number of interaction points by nIP. During a time interval dt ,
assumed large compared to the interval between two subsequent collisions, so that
several collisions take place and dN � 1, the number of particles removed from the
bunch is given by
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dN = −dt N 2

(
frev nIP
4πσx σy

)
σpp,

dN

N0
= −dt

(
N

N0

)2 L0 σpp nIP
Nb N0

,

−dn

n2
= dt

τnucl
, with n(t) = N (t)/N0, n(0) = 1, τnucl ≡ Nb N0

L0 σpp nIP
(3.171)

This last ODE can be trivially integrated to give:

N (t) = N0

(1 + t/τnucl)
⇒ L (t) = L0

(1 + t/τnucl)
2 . (3.172)

We can evaluate numerically τnucl using the LHC design parameters (for two exper-
iments):

τnucl = 2808 · 1.15 × 1011

1034 cm−2 s−1 · 100 mbarn · 2 = 44.8 h (3.173)

In analogy with the exponential decay, we can define the beam lifetime as the run
time at which the luminosity gets reduced to a factor of 1/e from its initial value.
With this convention, τ = τnucl(

√
e − 1) ≈ 29 h.

Discussion

Besides nuclear collisions, other effects, characterised by time scales τi , contribute to
beam losses. The time evolution of the luminosity can be often approximated by an

exponential lawL (t) = L0 e−t/τ , where τ = (∑
i τ

−1
i

)−1
is the total beam lifetime,

including collision loss.

Suggested Readings

For an overviewof theLHCdesign parameters, the reader is addressed to the technical
report [24].

Problem 3.34 Given a total operation time Ttot, determine the optimal run time of a
collider, i.e. the run duration Trun that provides the largest total integrated luminosity,
given a beam lifetime τ and a turn-around time Tcycl. Estimate the maximum total
integrated luminosity at the LHC using Trun = 4800 h (equivalent to 200 full-days),
τ = 15 h.

Solution

Given a total operation time Ttot and a turn-around time of the machine Tcycl, the
optimal run time Trun is defined as the run duration that maximises the integrated
luminosity over the entire operation time. Using the exponential approximation, see
Problem 3.33, Trun can be determined from the condition:
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0 = ∂

∂Trun

⎡
⎢⎢⎢⎣

Ttot
Trun + Tcycl︸ ︷︷ ︸
number of runs

∫ Trun

0
dt L (t)

︸ ︷︷ ︸
int. lum. per run

⎤
⎥⎥⎥⎦
T opt
run

= ∂

∂Trun

[
Ttot τ L0(0)(1 − e−Trun/τ )

Trun + Tcycl

]

T opt
run

,

0 = T opt
run

τ
− ln

(
1 + T opt

run + Tcycl
τ

)
. (3.174)

The last equation can be solved numerically. For example, by using the LHC para-
meters Tcycl = 1.2 h, which is dictated by the injection cycle PS → SPS → LHC
and by the energy ramping in the LHC, τ = 15 h (to be compared to the value τnucl
of Eq. (3.173)), a numerical scan of Eq. (3.174) shows that the zero of the equation is
obtained for T opt

run ≈ 5.5 h. With this value, we can estimate the integrated luminosity
at the end of the operation time:

Lint = 4800 h

5.5 h + 1.2 h
· 1034 cm−2 s−1 · 15 h ·

(
1 − exp

[
−5.5 h

15 h

])
≈ 110 fb−1.

(3.175)

This value is a crude approximation and should be taken as an order-of-magnitude
estimate.

Suggested Readings

For an overviewof theLHCdesign parameters, the reader is addressed to the technical
report [24].

Bando n. 1N/R3/SUB/2005

Problem 3.35 Compute the average number of interactions per bunch crossing if
the luminosity is L = 2.5 × 1031 cm−2s−1, the total cross section σ = 20 mbarn
and the bunches cross every 4µs. What is the probability of having zero interactions
per bunch crossing?

Discussion

Equation (3.142) encodes the recipes for maximising the luminosity of a given col-
lider. The beam energy γ is either limited by the accelerator or imposed by the
physics program. The normalised emittance depends on the full acceleration cycle
and is mostly fixed by technical limitations. The revolution frequency is determined
by the beam radius. The number of bunches is limited by the minimum spacing of
buckets along the beam, which depends for example on the RF cavities. The two
easiest ways to increase the luminosity are therefore to minimise the amplitude func-
tions at the IP, β∗ and/or to maximise the number of particles per bunch. While the
luminosity clearly benefits from these two operations, on the other hand the extra
rate is fully concentrated in a small time window around each bunch crossing. This
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would not be the case if the number of bunches or the revolution frequency could be
increased. The collisions events occurring simultaneously in the same bunch crossing
are called pile-up events.

Solution

The average rate of events is given byL σ . The collision events are actually clustered
in short time windows with duration of order Tcoll ∼ σz/c ∼ ns, separated by longer
inter-bunch intervals with no activity. We can compute the number of events per
bunch crossing as:

# collisions

bunch crossing
= # collisions / second

# bunch crossing / second
⇔ μPU = L σ

f
, (3.176)

where f is the collision frequency, i.e. f = Nb frev using the notation of Eq. (3.142).
From the numbers given by the exercise:

μPU = 1031 cm−2s−1 · 20 mbarn · 4µs = 2.0 (3.177)

The number of pile-up events will be distributed as a Poissonian variable with mean
μPU, hence:

P(n | μPU) = exp [−μPU] μn
PU

n! ⇒ P(0; μPU) = e−μPU ≈ 13.5%. (3.178)

In hadron colliders, where the inelastic cross sections are large, the number of pile-up
events can be very large. For example, at the LHCwith design conditions,μPU = 27,
which is expected to become as large as μPU ≈ 140 in the future high-luminosity
LHC upgrade [25].

Bando n. 18211/2016

Problem 3.36 An antiproton beam with momentum |p| = 6 GeV and total current
I = 0.16 mA moves inside a circular ring of length L = 300 m. At each round, the
beam crosses a hydrogen gas target with a surface density δ = 1014 cm−2. Calculate
the revolution frequency, the number of antiprotons, and the integrated luminosity
after T = 6 min. What beam energy would it be needed if the same centre-of-mass
energy had to be achieved by using a symmetric proton-antiproton collider?

Solution

The beam velocity is given by

|v| = |p|√
|p|2 + m2

p

= 0.988 c, (3.179)
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which we can approximate by c within 1%, which is fine given the accuracy on the
other data. The revolution frequency is therefore:

frev = |v|
L

≈ 3 × 108 m s−1

300 m
= 1.0 MHz. (3.180)

We can use Eq. (3.167) to determine the number of circulating protons in the beam:

Nb = I/e

frev
= 0.16 × 10−3 A/1.6 × 10−19 C

1.0 MHz
= 1.0 × 109. (3.181)

Since the hydrogen target is at rest, the collider behaves like a fixed-target experiment.
The luminosity is therefore given by Eq. (1.290):

L = Φ δ = I

e
δ = 0.16 × 10−3 A

1.6 × 10−19 C
· 1014 cm−2 = 1029 cm−2 s−1. (3.182)

The integrated luminosity after T = 6 min is given by:

Lint = L T = 1029 cm−2 s−1 · (6 × 60) s = 36 μb−1, (3.183)

wherewehave used the conversion cm−2 = 10−24 barn−1. The centre-of-mass energy
is given by Eq. (1.87) with m1 = m2 = mp. The beam energy of circular collider
operating at the same value of

√
s is:

2 Ecirc =
√
2m2

p + 2mp(|p|2 + m2
p)

1
2 ,

Ecirc = mp

√√√√1

2
+ 1

2

(
1 + |p|2

m2
p

) 1
2

= 1.81 GeV. (3.184)

Bando n. 18211/2016

Problem 3.37 A 10 GeV proton beam crosses an iron slab of thickness d = 0.1 cm.
The proton flux corresponds to a current I = 0.016 nA. The interaction length in
iron is λ = 17 cm. Estimate the rate of charged and neutral pions emerging from the
slab.

Solution

The interaction length is defined as the probability of interaction per particle and per
unit length, see Eq. (1.291). Since d � λ, we can approximate this probability by
d/λ, so that the number of proton-iron interactions per second is:

dN

dt
= I

e

(
d

λ

)
= 1.6 × 10−11 A

1.6 × 10−19 C

0.1 cm

17 cm
= 0.59 MHz. (3.185)

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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As discussed in Problem 2.35, high-energy protons in matter first produce one en-
ergetic hadron, typically, a pion, sharing a sizable fraction of the incoming proton
energy, e.g. p + p → p + n + π+, p + n → p + n + π0, etc., so we can assume
that the total rate of pions (neutral and charged) is equal to the interaction rate of
Eq. (3.185).

Bando n. 1N/R3/SUB/2005

Problem 3.38 An experiment with a direct-current beam is instrumented with a
trigger system with efficiency ε = 20%. The rate of events that need to be selected
online is f = 5 kHz. The data acquisition system generates a dead time of T = 1 ms
for each recorded event; during this latency, both the trigger and the detector are not
sensitive to additional events. Determine the average data acquisition rate.

Discussion

The data acquisition system illustrated in this problem is defined non-paralyzable
because the system is not sensitive to additional events arriving after one trigger, so
that the dead time cannot be extended beyond the single-event processing time. This
is in contrast with the so-called paralyzable systems, where the arrival of a new event
before the system has finished processing the previous one extends the time window
in which the system is not sensitive to additional events. Given a true event rate ν, a
dead time τ , and a trigger efficiency ε (probability of accepting an event given that
it has been accepted by the DAQ system), the measured rate m in a non-paralysable
system can be obtained like follows. Consider a time interval T � max

[
τ, ν−1

]
.

The number of triggers m ′ in this time interval will be given by the number of true
events occurring in the same time windowminus the number of true events occurring
during the total dead time generated by the accepted triggers, i.e.:

m ′ T = ν T − m ′ T τ ν ⇒ m = εm ′ = ε ν

1 + ντ
. (3.186)

For a paralyzable system, we first notice that, in the assumption that the number of
true events in a given time window is Poisson distributed, the time intervals between
two subsequent events has an exponential distribution with decay constant ν, where
ν is the true event rate. This can be easily proved by noticing that the probability of
zero events after a time Δt from a given event is e−ν Δt . Only true events spaced by
more than τ can generate a trigger, hence the measured rate is equal to the fraction
of events such that Δt > τ , i.e.:

m = ε ν e−(ν τ ). (3.187)

Differently from the non-paralyzable, case Eq. (3.188) admits two solutions for ν at
a given measured rate m.

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Solution

From Eq. (3.186), we can estimate the average data acquisition rate as:

m = 0.2 · 5 kHz
1 + 1 × 10−3 s · 5 × 103s−1

= 0.17 kHz. (3.188)

It is interesting to notice that a paralzsable system operating with the same conditions
would yield a trigger rate smaller by a factor of ≈25 compared to a non-paralyzable
one.

Suggested Readings

An introduction to the concept of paralysable and non-paralysable DAQ systems can
be found in Refs. [26, 27]. A more complete overview on the topic can be found in
Ref. [2].

Bando n. 1N/R3/SUB/2005

Problem 3.39 Collision events at a rate of 5 kHz are analysed to decide whether
an event has to be recorded or not. The decision takes a time Ttrig = 20µs while the
digitization takes Tdig = 1 ms. What rate of accepted events can be sustained if the
dead time has to be maintained below δ = 20%?

Solution

Let’s denote the collision rate by f and the fraction of signal events that we wish
to select online by εtrig. For example, εtrig can be the fraction of events that pass the
online selection devised to identify signal events, i.e. εtrig = σacc/σtot, where σacc is
the cross section for producing an event that passes the selection, while σtot is the total
cross section. The DAQ system gives rise to two types of dead time: the first comes
from the trigger system and affects the full collision rate. The second arises from
the digitizer and affects only the rate of events that have fired the trigger. Assuming
both systems to be non-paralyzable (see Problem 3.38), we can visualise the rate
reduction as a two-stage process:

f
Trigger−−−→

(
νtrig = εtrig f

1 + f Ttrig

)
Digitizer−−−−→

(
νdig = νtrig

1 + νtrig Tdig

)
. (3.189)

If one wants to maintain a fraction of lost events less than δ, where now the dead
time refers by extension to the fraction of signal events lost because of dead time in
the DAQ system, the rate in output to the digitizer needs to satisfy:
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νdig

εtrig f
≥ 1 − δ,

⎛
⎝ εtrig f

1 + f Ttrig

1

1 + εtrig f
1+ f Ttrig

Tdig

⎞
⎠ 1

εtrig f
≥ 1 − δ

1

1 + f (Ttrig + εtrig Tdig)
≥ 1 − δ, εtrig ≤ 1

f Tdig

δ

1 − δ
− Ttrig

Tdig
. (3.190)

With the choice δ = 0.2, we thus get

εtrig <
1

5 × 103 s−1 · 10−3 s

0.2

1 − 0.2
− 2 × 10−5 s

10−3 s
= 0.05 − 0.02 = 3%,

(3.191)

and the accepted rate is:

νtrig = εtrig f = 3% · 5 kHz = 150 Hz. (3.192)

Notice that the largest dead time of the system is achieved by chosing εtrig = 1 (all
triggering events are accepted), corresponding to a dead time

δ = 1 − 1

1 + f (Ttrig + Tdig)
≈ 0.83. (3.193)

If a smaller dead time is desired for the same efficiency, possible solutions are to
pipeline the events while waiting for a trigger accept, or parallelise the event digiti-
zation by using multiple CPU’s.

Suggested Readings

For an introduction to the queueing theory and to the use of trigger in HEP, the reader
is addressed to Ref. [2].

Bando n. 1N/R3/SUB/2005

Problem 3.40 Two scintillating counters are used to monitor the luminosity at a
collider. The two counters are located before and after the interaction point. Bunches
cross every T = 10µs and, at each bunch crossing, two digital signals, A and B,
are generated by the counters in the occurrence of an event. A logic AND of the
two signals measures the coincidence of the two signals in the same bunch crossing.
Background events, like those induced by beam halo particles, or collisions with the
rediual gas inside the beam pipe, are superimposed to the true events, thus generating
a random coincidence. The following mean rates are measured for the three signals:
fA = 7.53 × 104 Hz, fB = 6.67 × 104 Hz, and fA∩B = 5.43 × 104 Hz. Determine
the mean number of collisions per bunch crossing.
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Discussion

A standard technique for monitoring the luminosity at circular colliders is through
the use of two symmetric counters located at both sides of the interaction point.
Since the acceptance of the counters is fixed, the luminosity is proportional to the
rate of coincident events. If the cross section of the scattering process in the counter
acceptance is also known (e.g. Bhabba scattering for e+e− machines), an absolute
normalisation of the luminosity becomes possible. Because of background events,
false coincidences can be generated at random. By measuring independently the
individual counter rates and the coincidence rate, the rate of signal events can be
disentangled from the false coincidences.

Solution

Let’s first consider the signal in one of two counters, say counter A, and let us assume
for simplicity that any collision produces a signal in A. The probability of observing
an event inA for a given bunch crossing is the sumof probabilities of two independent
hypotheses:

Prob [A] = Prob [coll.] + (1 − Prob [coll.]) · Prob [bkg.] . (3.194)

Let us now consider N � 1 bunch crossings over a time T � 1/ f , where f is
the bunch crossing frequency. Multiplying both sides of Eq. (3.194) by N/T , and
remembering that Prob [coll.] = ν/ f , where ν is the coll. rate, we get:

N · Prob [A]
T

= N · Prob [coll.]
T

+
(
1 − ν

f

)
· N · Prob [bkg.]

T
,

fA = ν +
(
1 − ν

f

)
bA, (3.195)

where bA is the background rate in counter A. Similarly, we can consider the coin-
cidence signal, and compute its probability as:

Prob [A ∩ B] = Prob [coll.] + (1 − Prob [coll.]) · Prob [A] Prob [B] ,
N · Prob [A ∩ B]

T
= N · Prob [coll.]

T
+
(
1 − ν

f

)
· N · Prob [A]

T

N · Prob [B]
T

1

N/T
,

fA∩B = ν +
(
1 − ν

f

)
bAbB
f

. (3.196)

To summarise, we can write a system of three equations in three unknowns ν, bA,
and bB:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

fA = ν +
(
1 − ν

f

)
bA

fB = ν +
(
1 − ν

f

)
bB

fA∩B = ν +
(
1 − ν

f

)
bAbB
f .

(3.197)
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which can be used to determine the true collision frequency ν. Replacing the first
two equations into the last one:

fA∩B = ν + ( fA − ν) ( fB − ν)

f
(
1 − ν

f

) , ( f − ν) ( fA∩B − ν) = ( fA − ν) ( fB − ν) ,

ν = f fA∩B − fA fB
f − fA − fB + fA∩B

. (3.198)

Replacing the symbols by the measured values, we obtain an estimate:

ν = (105)(5.43 × 104) − (7.53 × 104)(6.67 × 104)

105 − 7.53 × 104 − 6.67 × 104 + 5.43 × 104
Hz = 3.31 × 104 Hz.

(3.199)

The mean number of collisions per bunch crossing as defined in Eq. (3.176)
is given by:

μPU = ν

f
= 3.31 × 104 Hz

105 Hz
= 0.331. (3.200)

Suggested Readings

The luminositymeasurement at LEP using two luminositymonitorsmounted at small
angles with respect to the beam is discussed in details in Ref. [28].

Appendix 1

The computer program below implements a Monte Carlo simulation of the experi-
mental apparatus considered in Problem 3.10. The measured points (y0, y1, y2) are
sampled from a Gaussian pdf centred around the true values yi = x2i /2R and with
standard deviation equal to the detector resolution. The signed sagitta is computed
from

s = y2 + y0
2

− y1, (3.201)

and a sign flip corresponds to the outcome s < 0.
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import math

import random

# the true particle positions; use MKS units and pT in GeV/c

def track(x=1.0, pt=1000., B=1.0):

R = pt/(0.3*B)

return 0.5*x*x/R

# track sagitta\index{Sagitta} from measured position

def sagitta(y0,y1,y2):

return 0.5*(y2+y0) - y1

# the measured particle positions

def smear(mu, sigma):

return random.gauss(mu,sigma)

# generate ntoys pseudo-measurement; use MKS units and pT in

GeV/c def toys(ntoys=100, pt=1000., B=1.0, s0=1.0e-04, s1=0.5e-04,

s2=1.0e-04):

outcomes = [0,0]

for toy in xrange(ntoys):

y0 = smear( track(x=0.0, pt=1000., B=1.0), s0 )

y1 = smear( track(x=1.0, pt=1000., B=1.0), s1 )

y2 = smear( track(x=2.0, pt=1000., B=1.0), s2 )

s = sagitta(y0,y1,y2)

outcomes[ int(s<0) ] += 1

mis = float(outcomes[1])/float(ntoys)

err = math.sqrt((1-mis)*mis/ntoys) # binomial pdf

print ("Charge mis-id = (%.2f +/- %.2f)"% (mis*100., err*100))

################

toys(ntoys=1000000)

Appendix 2

The computer program below computes numerically the integral:

σ 2
〈pTΔφ〉 ≈

(
N (α − 1)

pL (1−α)
T − pH (1−α)

T

∫ pHT

pLT

dpT
p−α
T

c2 + c1 p2T

)−1

(3.202)

from Problem 3.12.



238 3 Accelerators and Experimental Apparatuses

import math

# the constants
c1 = 2*math.pow(2.0e-03,2)
c2 = math.pow(0.0136,2)*(60./1.8)
BP = 2 * 0.6
acc = 1.0e-02

def integrate(x_l=5.0, x_h=100., alpha=2.7, step = 1.0 ):
integ = 0.0
n_step = int((x_h-x_l)/step)
for s in xrange( n_step ):

x = x_l + (s+0.5)*step
val = math.pow(x, -alpha)/(c2 + c1*x*x)
integ += val*step

integ *= (alpha-1)/(math.pow(x_l, 1-alpha) - math.pow(x_h, 1-alpha))
return 1./math.sqrt(integ)

#######################

x_l = 5.
x_h = 300.
res = integrate(x_l=x_l, x_h=x_h, alpha=2.7, step = 0.05 )
print"<sigma>=", res,"N=", res/BP * math.pow(acc, -2)
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Chapter 4
Statistics in Particle Physics

Abstract This chapter is devoted to the statistical treatment of experimental data.
By its very nature, the outcome of a particle physics experiment is a to be considered
as random process: the theory of probability thus provides the correct theoretical
framework. A few concepts are of key importance in data analysis. After recalling
a few outstanding theorems, the properties of the likelihood function are illustrated
by considering simple cases that can be handled analytically, i.e. without the use of
computer programs. The focus is then put on the combination of random variables,
error propagation, and the construction of frequentist confidence intervals.

4.1 Elements of Statistics

The outcome of an experiment can be treated as a random variable. On the one
hand, most of the reactions studies in particle physics are associated with quantum-
mechanical transition amplitude. In this case, only the probability of occurrence is
prescribed, but not the actual outcome of a given reaction. On the other hand, the
presence of noise in any measurement introduces a certain degree of randomness.
For these reasons, the interpretation of an experiment has to be carried out according
to the paradigms of statistics. There is a vast literature of text books on probability,
statistics, and data analysis applied to particle physics. No attempt is made here to be
exhaustive in this respect. A few concepts and classical results, however, stand out
for their pervasive presence and cardinal importance in the analysis of experimental
data. This section collects a few outstanding results that are relevant for solving the
proposed exercises.

The “large number” theorems

There are two main theorems one should always remember when dealing with
large size data samples. For their proof, the reader is addressed to dedicated books,
see e.g. Ref. [1].

Theorem 4.1 (Law of Large Numbers) Let {X1, . . . , X N } be a sequence of N inde-
pendent and identically distributed random variables with mean μ and variance
σ 2 < ∞. Then, the sample mean

© Springer International Publishing AG 2018
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241



242 4 Statistics in Particle Physics

SN =
∑N

i=1 Xi

N
(4.1)

converges to μ in the limit N → ∞.

This result guarantees that the repeated measurement of the same unknown quantity
will provide asymptotically an estimator of the true value.

An important application of the Large Number Law is the Monte Carlo method
for numerical integration. Considering for simplicity the one-dimensional case, the
integral of a function g over the interval [a, b] can be estimated by the sample mean
g evaluated at points ui uniformly distributed in [a, b]. Indeed, the Law of Large
Number guarantees that:

IN = (b − a)

N

N∑

i

g(ui ) → (b − a)

∫ b

a
du f (u) g(u) =

∫ b

a
du g(u). (4.2)

Another benefit of the MC integration compared to other approximate analytical
methods is that the error on the integral scales like N−1/2 independently of the
dimensionality.

Theorem 4.2 (Central Limit theorem) Let {X1, . . . , X N } be a sequence of N inde-
pendent random variables with mean μi and variances σ 2

i . Under suitable hypothesis
(Lyapunov condition), the p.d.f. of the variable

Z N =
∑N

i=1(Xi − μi )
√∑N

i σ 2
i

(4.3)

converges to a normal distribution N (0, 1) in the limit N → ∞.

The importance of theCentral Limit theorem lies in its prediction that an experimental
measurement,which is affected by a sufficiently large number of independent random
fluctuations of a priori unknown distribution, but finite variance, will ultimately have
a Gaussian distribution.

The likelihood function for point estimation

Let X = {X1, . . . , X N } be a set of N independent observations of a random variable
X (in general, X can a vector of random variables), and let f (X |θ) be the p.d.f. of
X which depends on a set of parameters θ . The domain of X is further assumed to
be independent of θ . The likelihood function of the data is defined by

L(X|θ) =
N∏

i=1

f (Xi | θ). (4.4)

The maximum likelihood estimator of θ , indicated by θ̂ , is a maximum of the like-
lihood function (4.4). For the case that L is a differentiable function of θ , the ML
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estimator is the root of the equation:

[
N∑

i=1

∂

∂θ
ln f (Xi | θ)

]

θ̂

= 0 (4.5)

In general, several roots may exist for finite N (local maxima), but the global maxi-
mum will always asymptotically converge to the true value. The ML estimator thus
defined has the following asymptotic properties:

Theorem 4.3 (Asymptotic properties of theML estimator) The maximum likelihood
estimator is asymptotically:

• a consistent and unbiased estimator (Law of Large Numbers), i.e. it gets arbitrarily
“close” to the true parameter value;

• a sufficient estimator (Darmois theorem), i.e. it encodes all of the information on
the parameters that the data contain;

• the most efficient estimator (Cramer–Rao inequality).
• The covariance matrix of the ML estimator is

V (θ̂)i j = −E

⎡

⎣

(
∂2 ln L(X|θ)

∂θi ∂θ j

)−1
⎤

⎦ = N−1E

⎡

⎣

(
∂2 ln f (X |θ)

∂θi ∂θ j

)−1
⎤

⎦ = (
N Iθ

)−1
,

(4.6)

where Iθ is the information matrix. Thus, the quantity
√

N (θ̂ − θ) is distributed
with p.d.f. N (0, I −1

θ ).
• The quantity at the left-hand side of Eq. (4.5) is also normally distributed with

mean 0 and variance N Iθ .

Owing to its attractive properties, the maximum likelihood method for point estima-
tion is the most used technique for the cases where a likelihood model of the data
is available, which is often the case in particle physics where the prior knowledge is
usually provided by some theoretical model.

The likelihood function for hypothesis testing

Let θ represent a point of the k-dimensional parameter space on which we wish to
make inference from the data. Each point corresponds to a certain hypothesis, which
can be simple if it consists of just one point, e.g. θ = θ0, or composite, it consists
of multiple simple hypotheses, e.g. ξ(θ) = 0 with ξ is a vector of constraints of
dimension r < k. Given two such hypotheses θ0 and θ1, the likelihood-ratio test
statistic λ is defined as:

λ = L(X|θ0)

L(X|θ1)
. (4.7)

The importance of the likelihood-ratio test statistic relies on its optimal properties to
discriminate between two hypotheses, and on its known asymptotic behaviour.
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Theorem 4.4 (Properties of the likelihood-ratio test statistic) The likelihood-ratio
test statistic is:

• the best test statistic for simple hypotheses testing (Neyman–Pearson lemma);
• asymptotically the most powerful test statistic to discriminate between two com-

posite hypotheses (Wald’s theorem [2]).
• If the maximum likelihood estimators of θ are given, the asymptotic distribution

of the likelihood ratio

λ = L(X| ˆ̂θ)

L(X|θ̂)
(4.8)

is known (Wilks’ theorem [3]). Here, θ̂ is the ML estimator obtained by maximising

the likelihood with respect to all parameters, while ˆ̂
θ is the ML estimator obtained

by maximising the likelihood in a subset of the parameter space defined by the
r constraints ξ(θ) = 0 (conditional likelihood). In particular, if the hypothesis
under test is true, the variable q = −2 ln λ is distributed like a χ2 with as many
degrees of freedom as the number of fixed parameters (r).

The special case ξ(θ1) = θ1 − μ = 0 gives:

q(μ) = −2 ln λ(μ) = −2 ln
L(X|μ,

ˆ̂
θ2, . . . ,

ˆ̂
θk)

L(X|θ̂1, . . . , θ̂k)
= (μ − μ̂)2

σ 2
μ̂

+ O(N− 1
2 ), (4.9)

where μ̂ is the ML estimator of μ, which is asymptotically Gaussian distributed
around μ with standard deviation σμ̂. See Ref. [4] for more details. The 68.3 and
95.4% CL intervals on μ can be then determined as the points at which q = 1 and
q = 4, respectively.

Problems

Problem 4.1 Let X be a random variable with p.d.f. f (X |θ), and X an array of
independent observations of X . Prove that the ML estimator θ̂ provides a consistent
estimator of θ .

Discussion

The maximum likelihood estimator is an instance of the so-called implicitly defined
estimators, defined as the roots of the experimental observable:

ξN (θ̂) = 1

N

∑

i

g(Xi , θ̂ ) = 0, (4.10)
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ξN

θ

θ̂1θ̂0

∂ξN/∂θ

Fig. 4.1 Illustration of an implicitely defined estimator. For finite N , one or multiple roots of the
equation ξN = 0 exist. One of such solutions will however converge to the true value θ for N → ∞,
provided that the derivative of ξN is asymptotically non-zero

where g satisfies the constraint E [g(X, θ)] = 0. By the Law of Large Numbers, the
estimator defined by Eq. (4.10) converges to the true value θ , provided that:

∣
∣
∣
∣ limN→∞E

[
∂ξN (θ)

∂θ

]∣
∣
∣
∣ > 0 (4.11)

This last condition guarantees that the first equation can be inverted to yield a solution,
see Fig. 4.1.

Solution

Since f is a p.d.f., it must satisfy the normalisation condition

∫

d X f (X |θ) = 1 (4.12)

for any value of θ . Differentiating both sides of Eq. (4.12) with respect to θ , we thus
have:

0 = ∂

∂θ

∫

d X f (X |θ) =
∫

d X
∂ f (X |θ)

∂θ
=

∫
1

f

∂ f (X |θ)

∂θ
f d X =

= E

[
∂ ln f (X |θ)

∂θ

]

(4.13)

By differentiation twice Eq. (4.12) with respect to θ , we obtain:

0 = ∂

∂θ

∫
∂ ln f (X |θ)

∂θ
f (X |θ) d X =

∫ [
∂2 ln f (X |θ)

∂θ2
+

(
∂ ln f (X |θ)

∂θ

)2
]

f d X (4.14)

Hence, if we indicate by ξN (θ) the sum of Eq. (4.5) divided by N , the Law of Large
Numbers states that
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lim
N→∞ ξN (θ) = E

[
∂ ln f (X |θ)

∂θ

]

= 0 (4.15)

lim
N→∞

∂ξN

∂θ
= E

[
∂2 ln f (X |θ)

∂θ2

]

= −E

[(
∂ ln f

∂θ

)2
]

< 0 (4.16)

The second condition guarantees that the first equation can be inverted to yield a solu-
tion. Thus, theML estimator defined implicitely as the root of ξN will asymptotically
converge to the true value θ .

Suggested readings

For more details on the proof, the reader can refer to Chap.7 of Ref. [5].

Problem 4.2 An experiment measures ñ events, with ñ � 1, in a channel where a
signal of unknown yield s contribute. The channel is affected by a source of back-
ground for which an auxiliary measurement b̃ ± σb is available (b̃ can be assumed to
be Gaussian distributed with standard deviation σb). Verify explicitlyWilks’ theorem
by studying the behaviour of profiled likelihood ratio q(s).

Solution

For ñ � 1, the number ofmeasured events can be assumed to be normally distributed
with standard deviation

√
ñ, see Problem 4.11. Under this assumption, the likelihood

function of the data is given by:

L(ñ, b̃ | s, b) = 1√
2π

√
ñ
exp

[

− (ñ − s − b)2

2ñ

]
1√
2πσb

exp

[

− (b̃ − b)2

2σb

]

(4.17)

The ML estimators n̂ and b̂ of the signal and background yields are the solutions of
the equation

0 = ∂s,b ln L(ñ, b̃ | s, b) = ∂s,b

[
(ñ − s − b)2

2ñ
+ (b̃ − b)2

2σ 2
b

]

⇒
{

ŝ = ñ − b̃

b̂ = b̃

(4.18)

The constrained ML estimator ˆ̂b is obtained by fixing s and maximising − ln L with
respect to b, yielding:

0 = ∂b ln L(ñ, b̃ | s, b) ⇒ ˆ̂b =
b̃
σ 2

b
+ ñ−s

ñ

1
σ 2

b
+ 1

ñ

, (4.19)
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which coincides with the combined ML estimator from two independent measure-
ments, see Eq. (4.83). The profile likelihood ratio q(s) is then given by:

q(s) = −2 ln
L(s, ˆ̂b)

L(ŝ, b̂)
= −2

⎡

⎣− (ñ − s − ˆ̂b)2

2ñ
− (

ˆ̂b − b̃)2

2σ 2
b

+ (ñ − ŝ − b̂)2

2ñ
+ (b̂ − b̃)2

2σ 2
b

⎤

⎦ =

= (ñ − s − ˆ̂b)2

ñ
+ (

ˆ̂b − b̃)2

σ 2
b

=
(

n̂ − s − b̃
)2

σ 4
b n

(
1
σ 2

b
+ 1

ñ

) +
(

n̂ − s − b̃
)2

σ 2
b n2

(
1
σ 2

b
+ 1

ñ

) =

=
(

s − n̂ + b̃
)2

σ 2
b + n

=
(
ŝ − s

)2

σ 2
b + n

. (4.20)

Since ŝ is Gaussian distributed (it is the linear combination of Gaussian distributed
variables, see Problem 4.9), with variance n + σ 2

b , it follows that q(s) is distributed
like aχ2 with one degree of freedom, in agreementwithWilks’ theorem, seeEq. (4.9).
Notice that the effect of the uncertainty σb on the background yield is to broaden the
negative log-likelihood function compared to the expectation from the sole Poisson
statistics.

Problem 4.3 An experiment measures the decay times of an unstable particle with
lifetime τ , produced at rest in the laboratory frame.Denote the set of N measurements
byX = {t1, . . . , tN }. Show that in the limit N → ∞, theMLestimator τ̂ is distributed
asN (τ, (N Iτ )−1), where Iτ is the information, whereas ∂τ ln L(X | τ) is distributed
as N (0, N Iτ ).

Solution

The decay times t are distributed according to the exponential law

f (t | τ) = 1

τ
e− t

τ ⇒ E [t] = τ, Var [t] = τ 2. (4.21)

The information Iτ is given by:

Iτ = E

[

−
(

∂2 ln f (t | τ)

∂τ 2

)]

= −
∫ ∞

0
dt

(

−2 t

τ 3
+ 1

τ 2

)
1

τ
e− t

τ = 1

τ 2
. (4.22)

If the N measurements are all independent, the likelihood of the data X is given by:

L(X | τ) =
N∏

i=1

f (ti | τ) = 1

τ N
e−

∑N
i=1 ti
τ , ln L(X | τ) = −N ln τ −

∑N
i=1 ti
τ

.

(4.23)
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The ML estimator τ̂ is given by the roots of Eq. (4.5), i.e.

0 = ∂

∂τ
ln L(X | τ̂ ) =

N∑

i=1

∂

∂τ
ln f (ti | τ̂ ) = − N

τ̂
+

∑N
i=1 ti
τ̂ 2

,

τ̂ =
∑N

i=1 ti
N

= τ√
N

∑N
i=1(ti − τ)√

Nτ
︸ ︷︷ ︸

zN

+τ (4.24)

In the last equation,we have isolated the variable zN , which theCentral Limit theorem
predicts to be asymptotically distributed as N (0, 1). Since the ML estimator is a
linear function of zN , it will be also (asymptotically) normally distributed, with mean
and variance:

E
[
τ̂
] = τ, Var

[
τ̂
] = τ 2

N
= 1

N Iτ
, (4.25)

where we have made use of Eq. (4.22). Finally, from Eq. (4.23) we can see that

∂

∂τ
ln L(X | τ) = − N

τ
+

∑N
i=1 ti
τ 2

=
∑N

i=1(t1 − τ)

τ 2
=

√
N

τ
zN . (4.26)

The left-hand side of Eq. (4.26) is asymptotically normally distributed with mean
and variance given by:

E

[
∂

∂τ
ln L(X | τ)

]

=
√

N

τ
E [zN ] = 0 (4.27)

Var

[
∂

∂τ
ln L(X | τ)

]

= N

τ 2
Var [zN ] = N Iτ (4.28)

Suggested readings

The reader is addressed to Chap.5 of Ref. [5] for further details on the information
and its relation with the ML estimator.

Problem 4.4 Show that for a given random variable X , the quantity

E [ f (X)] · √Var [X ], (4.29)

where f is the p.d.f. of X , admits a lower bound. Estimate this bound.
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Discussion

This exercise complements Problem 3.28 by proving that the luminosity of a bunched
collider whose bunch densities are independent is inversely proportional to the bunch
RMS in the transverse plane. Indeed, the luminosity in such a case is proportional to∫

dx n2(x), where n is the bunch particle density in the transverse direction.

Solution

Without loss of generality, we can assume E [X ] = 0. We then introduce the non-
normalised function ρ, such that f = ρ

[∫
dx ρ

]−1
. We define the functional F as:

F[ρ] ≡

⎛

⎜
⎜
⎝

∫

dx ρ(x)

︸ ︷︷ ︸
I

⎞

⎟
⎟
⎠

−5 ⎛

⎜
⎜
⎝

∫

dx ρ2(x)

︸ ︷︷ ︸
K

⎞

⎟
⎟
⎠

2 ⎛

⎜
⎜
⎝

∫

dx x2ρ(x)

︸ ︷︷ ︸
J

⎞

⎟
⎟
⎠ (4.30)

where I , K , and J are assumed to be finite, and 〈X2〉 is the variance of X . We shall
prove that F has a minimum for the family of parabolic distributions

ρ0(x) = max

[

a

(

1 − 16

9
x2

)

, 0

]

, (4.31)

with a > 0. Indeed, if we can consider the infinitesimal variation δρ at position x ,
Eq. (4.30) gives:

δF =
(
4ρ0

K
+ x2

J
− 5

J

)

F δρ dx . (4.32)

By requiring δF = 0 for any δρ and dx , we then have the condition:

4ρ0

K
+ x2

J
− 5

J
= 0 ⇒ ρ0(z) =

{
K
4

(
5
I − z2

J

)
− (

5J
I

) 1
2 ≤ x ≤ (

5J
I

) 1
2

0 otherwise
(4.33)

However, I , K , and J are not independent. In particular, the definition is consistent
provided that:

I =
∫

dx ρ0(x) = K

4

(
5

I

∫

dx − 1

J

∫

dx x2
)

= K

4

(
5J

I

) 1
2
[
10

I
− 10

3I

]

= K

3

5
3
2 J

1
2

I
3
2

,

J =
∫

dx x2ρ0 = K

4

(
5

I

∫

dx x2 − 1

J

∫

dx x4
)

= K

4

(
5J

I

) 3
2
[
10

3I
− 2

I

]

= K

3

5
3
2 J

3
2

I
5
2

,

K =
∫

dx ρ20 = K

4

(
5

I

∫

dx ρ0 − 1

J

∫

dx x2ρ0

)

= K . (4.34)

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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Hence, for ρ0(x) to be consistent, we need to have:

I
5
2 J− 1

2 K −1 ≡ F[ρ0]− 1
2 = 5

3
2

3
⇒ F[ρ0] = 32

53
= 0.072. (4.35)

A straightforward calculation shows that the solution (4.30) satisfies Eq. (4.35) for
any a > 0. Therefore:

E [ f (X)] · √Var [X ] ≥ √
F[ρ0] = 0.268. (4.36)

However, the functional F is not bounded from above: for example, consider the
Cauchy distribution C ; in this case, E [C ] is finite, but the variance is not, so that the
functional F is infinite.

Suggested readings

This exercise is based on Ref. [6].

Bando n. 13153/2009

Problem 4.5 Discuss a method to simulate a data sample distributed according to a
given function f (x).

Discussion

Consider n random variables x distributed with probability density function f (x).
Let y = h(x) be a generic function of x. The variable y is also a random variable.
The p.d.f. g of y is given by

g(y) =
∫

dx f (x) δ(y − h(x)) =
∑

x̃1

∫

dx2 . . . dxn
f (x̃1, x2, . . . , xn)∣

∣
∣ ∂h
∂x1

(x̃1, x2, . . . , xn)

∣
∣
∣
,

(4.37)

where x̃1 are the roots of the equation y − h(x) = 0.

Solution

A sample of data points distributed according to a generic p.d.f. f can be obtained
by applying an analytical transformation to a sample of randomly distributed points
x ∈ [0, 1], i.e. with p.d.f. g(x) = I[0,1]. If the numbers are randomly distributed on a
different interval, one can always redefine x such that it is always contained within
the [0, 1] interval. Let’s define

F(t) ≡
∫ t

−∞
dt ′ f (t ′), y ≡ F−1(x). (4.38)
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By using Eq. (4.37), it easy to verify that the sample of y values thus generated is
distributed according to the target p.d.f. f . Indeed:

g (F(y))
∣
∣
∣ d F−1

dx

∣
∣
∣

=
∣
∣
∣
∣
d F

dy

∣
∣
∣
∣ = f (y), (4.39)

where we have used the fact that g(x) = 1 and the chain rule ( f −1)′ = ( f ′)−1.
For the special case that f is Gaussian function of arbitrary mean μ and standard

deviationσ , a cheapermethod to generate the desired distribution relies on theCentral
Limit Theorem 4.2 which guarantees that the variable

zN =
∑N

i xi − N/2√
N/12

(4.40)

for uniformly distributed points xi is asymptotically distributed like N (0, 1). By
considering the variable y = σ z + μ, we can then obtain the desired target distrib-
ution.

If f ∼ e−x/2xn/2−1, i.e. a χ2
n distribution with n degrees of freedom, the above

method can be used to generate n independent variables zi , and then considering the
sum y = ∑n

i=1 z2i .

Suggested readings

The method of generating events distributed according to a prior model by means
of random numbers is called Monte Carlo generation, and represents one of the
most used tool to simulate multi-dimensional problems. Examples relevant for HEP
include the simulation of collision events and of particle interaction with the detector.
For an overview on MC methods, see Ref. [5].

Bando n. 1N/R3/SUB/2005

Problem 4.6 If a particle with mean lifetime τ has not decayed after a time t , what
is the probability that it decays within the following time interval Δt?

Solution

The exponential lawhas “nomemory”. Indeed, the probability that the particle decays
at a time greater than t1, provided that the particle has not yet decayed at the time t0,
can be computed by Bayes theorem:

Prob [t ≥ t1 | t ≥ t0] = Prob [t ≥ t1, t ≥ t0]

Prob [t ≥ t0]
= e−t1/τ

e−t0/τ
= e−(t1−t0)/τ , (4.41)

with t1 > t0. Hence, the probability of surviving over a time Δt = t1 − t0, given
that the particle has survived up to a time t0, depends only on Δt and not on the
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intermediate time t0. We can therefore conclude that the probability of decaying in
a time window Δt starting from any time at which the particle is still undecayed, is
always given by 1 − e−Δt/τ .

Problem 4.7 Determine the p.d.f. of the variable t = t1 + t2, where t1 and t2 are
independent random variables with exponential distribution with mean τ1 and τ2,
respectively.

Solution

Since t is a known function of the random variables t1 and t2, whose joint p.d.f. is
also known, we can use Eq. (4.37) to determine the p.d.f. g(t):

g(t) = 1

τ1τ2

∫ ∞

0
dt1 dt2 e− t1

τ1
− t2

τ2 δ(t − t1 − t2) = 1

τ1τ2
e−t/τ2

∫ t

0
dt1 e

−t1
(

1
τ1

− 1
τ2

)

=

= 1

τ2 − τ1
e−t/τ2

[
1 − e−t τ2−τ1

τ1τ2

]
= e−t/τ2 − e−t/τ1

τ2 − τ1
, (4.42)

with t ≥ 0. As made clear by Eq. (4.42), the p.d.f. g(t) is not of exponential form.

Discussion

The p.d.f. g(t) describes the differential time distribution of a stable isotope C pro-
duced from the nuclear decay chain A → B → C , see Problem 4.8. If one of the
two lifetimes is much larger than the other, the p.d.f. g(t) reduces to an exponential
law with lifetime given by the maximum between τ1 and τ2.

Bando n. 18211/2016

Problem 4.8 A nucleus A undergoes α-decay to a nucleus B with a lifetime τA =
2 min. The nucleus B then decays to a nucleus C with lifetime τB = 5 × 103 s. At
the beginning there are 2.7 × 107 nuclei of type A. Compute the activity of B after
1.2 s and after 5 × 103 s.

Discussion

The time evolution of the three populations NA, NB , and NC can be obtained ana-
lytically by solving a joint system of ODE that describes the detailed input-output
balance: ⎧

⎪⎨

⎪⎩

ṄA = −λA NA

ṄB = +λA NA − λB NB

ṄC = +λB NB

, with

⎧
⎪⎨

⎪⎩

NA(0) = N0

NB(0) = 0

NC(0) = 0

(4.43)

with λi = 1/τi . The first of Eq. (4.43) can be readily integrated yielding an exponen-
tial decay NA(t) = N0 e−λAt , which can be then inserted in the second equation giving
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a first-order polynomial ODE with a uniform term. The solution can be obtained by
using the general algorithm for solving this type of ODE, or by trying an ansatz
solution given by an arbitrary linear combinations of e−λA t and e−λB t functions. The
equation and the boundary conditions then fix the unknown coeffcients.

Solution

Instead of solving Eq. (4.43), we take a “probabilistic” approach where the time of
a nuclear decay is treated as a random variable: the p.d.f g(t) derived in Eq. (4.42)
thus describes how the arrival of the nuclei C is distributed in time. The population
NC(t) is thus proportional to the cumulative function of g evaluated at time t :

NC(t) = N0

∫ t

0
dt ′ g(t ′) = N0

τB − τA

[
τB

(
1 − e−t/τB

) − τA
(
1 − e−t/τA

)] =

= N0

[

1 + τA e−t/τA − τB e−t/τB

τB − τA

]

(4.44)

In order to find NB(t), we first notice that the total number of nuclei NA + NB + NC

must be conserved in time, so that:

NA(t) + NB(t) + NC(t) = N0, NB(t) = N0 − NA(t) − NC(t) =
= N0

[

1 − e−t/τA −
(

1 + τAe−t/τA − τBe−t/τB

τB − τA

)]

= N0 τB

τB − τA

(
e−t/τB − e−t/τA

)
.

(4.45)

The activity AB of the nucleus B is defined as the rate of B → C decays in the
sample, i.e.:

AB(t) = λB NB(t) = N0

τB − τA

(
e−t/τB − e−t/τA

)
. (4.46)

Given that τB � τA, we can approximate the activities at the time t1 = 1.2 s � τA

and t2 = 5 × 103 s = τB � τA as:

AB(t1) ≈ N0

τB

(

1 − t1
τB

− 1 + t1
τA

)

≈ N0

τB

t1
τA

= 0.54 × 102 Bq (4.47)

AB(t2) ≈ N0

τB

1

e
= 0.20 × 104 Bq, (4.48)

where we have expressed the results in the standard units of Bq = 1Hz. This result
is intuitive: after a time interval small compared to the lifetime of B, almost all the
decayed nuclei A have been transmuted into B; the sample thus contains a population
of B with size λA t1 N0, and the activity of B is λB λA t1 N0. After a time interval t2
much larger than τA, the initial sample of nuclei A has fast transmuted into B: the
activity of B is thus the same as if the sample at time t = 0 had been entirely made
of nuclei B.
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Suggested readings

For more details on the decay chain problem see e.g. Sect. 1.11 of Ref. [7].

Problem 4.9 Prove that the sum of an arbitrary number of Gaussian random vari-
ables is still a Gaussian variable.

Discussion

This can be more elegantly proved by going into the Fourier-transform space, or, in
probability language, by using the characteristic function of a p.d.f.. Given a random
variable X with p.d.f. f (X), its characteristic φX (t) is defined as

φX (t) = E
[
ei t X

] =
∫ +∞

−∞
dx ei t x f (x), f (x) = 1

2π

∫ +∞

−∞
dt e−i t xφX (t).

(4.49)

The second equation shows how to revert back to the x space. From its definition, it
also follows that the characteristic of the sum of N independent variables is given
by the product of the N characteristic:

φ∑
Xi (t) =

N∏

i=1

φXi (t). (4.50)

The method of characteristics is often used in probability to compute the p.d.f. of
composite variables, including discrete ones, see e.g. the classical proof of theCentral
Limit theorem.

Solution

Let’s define Z = ∑N
i Xi . We can apply Eq. (4.50) to give:

φZ (t) =
N∏

i=1

φXi (t) =
N∏

i=1

exp

[

i μi t − 1

2
σ 2

i t2
]

= exp

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

i

⎛

⎝
N∑

i

μi

⎞

⎠

︸ ︷︷ ︸
μ

t − 1

2

⎛

⎝
N∑

i

σ 2
i

⎞

⎠

︸ ︷︷ ︸

σ2

t2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

g(Z) = 1

2π

∫ +∞
−∞

dt e−i(Z−μ)t− 1
2 σ2t2 = N (Z | μ, σ). (4.51)

Hence, g(Z) is still a Gaussian p.d.f. Notice that the mean and variance of Z could
have been guessed a priori as a consequence of the linear dependence with respect
to the N variables.
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Problem 4.10 Show that the sum of an arbitrary number of independent Poisson
variables is still a Poisson variable.

Solution

It suffices to consider the sumof two variables: if their sum is still Poisson-distributed,
by recursive sum of pairs of variables we can prove that also the sum of an arbitrary
number of such variables is still Poisson-distributed. Let’s denote these two variables
bym andn, and theirmeans byμ andν, respectively.Wewant to prove that k = m + n
is Poisson-distributed with mean κ = μ + ν. Under the assumption that m and n are
independent, the probability of observing k is given by

Prob [k] =
k∑

m=0

P(m | μ)P(k − m | ν) =
k∑

m=0

e−(μ+ν)μm νk−m

m! (k − m)! =

= e−(μ+ν)(μ + ν)k

k!
k∑

m=0

k!
m! (k − m)!

(
μ

μ + ν

)m (

1 − μ

μ + ν

)k−m

︸ ︷︷ ︸
=1

=

= P(k | μ + ν). (4.52)

Hence, k is a Poisson variable with mean μ + ν.

Discussion

This fact has important implications in counting experimentswhere the channel under
study receives contribution from several uncorrelated processes (e.g. a signal process
plus number of independent sources of background): the number of events counted
in the bin of the observable under study is still Poisson-distributed with mean given
by the sum of means of all contributing processes.

Problem 4.11 Prove that a Poisson p.d.f. approaches aGaussian p.d.f. with the same
mean and variance in the limit N → ∞.

Solution

We can use Stirling formula to approximate the asymptotic behaviour of n!:

n! ≈ √
2π n

(n

e

)n
. (4.53)

By making use of Eq. (4.53), the Poisson p.d.f. becomes:

P(n | μ) ≈ 1√
2π n

e−μμn
( e

n

)n = 1√
2π n

e−(n−μ)+n ln μ

n =

= 1√
2π n

e
−(n−μ)+n

(
− n−μ

n − (n−μ)2

2n2
+O( 1

n2
)
)

= N (n | μ,
√

μ) + O(n− 1
2 ),

(4.54)
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Fig. 4.2 Comparison
between P(n | μ) (solid
line) and N (n | μ,

√
μ)

(dashed line) for different
values of μ. For the Poisson
p.d.f., the n! term is replaced
by its analytical continuation
Γ (x + 1)

where we have Taylor-expanded the logarithm around μ/n ≈ 1. For illustration,
Fig. 4.2 compares P(n | μ) and N (n | μ,

√
μ) for different values of μ.

Discussion

Thanks to this result, the bin contents ni of a histograms, such that ni � 1, can be
treated as gaussian variables with standard deviation σi = √

ni . This proves very
useful for statistical tests, like the Pearson χ2 test, since the distribution of the test
statistic becomes that of a χ2 variable. Notice that we could have predicted the large
sample behaviour of the Poisson p.d.f. by invoking theCentral Limit theorem. Indeed,
since any Poisson process with large mean can be seen as the sum of an arbitrarily
large number of Poisson variables with finite variance, see Problem 4.10, the limiting
distribution must be a Gaussian.

Bando n. 1N/R3/SUB/2005

Problem 4.12 An experiment selects signal events at a rate s and background events
at a rate b. Determine the data taking time needed to observe the signal with a
statistical significance of n standard deviations.

Solution

Let’s denote the data taking time by Trun. The statistical significance for a counting
experiment with large event counts is defined as the signal yields NS in units of the
standard deviations of the background, which for large event counts can be estimated
by

√
NB. Hence:

n ≤ NS√
NB

= s Trun√
b Trun

⇒ Trun ≥ n2 b

s2
(4.55)

For a given significance, the data taking time scaleswith an increased signal ratemore
favourably than for the background: for a small relative increase s → (1 + εS)s, the
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background is allowed to undergo a twofold relative increase without changing the
significance for a given data taking time.

Problem 4.13 Prove that the number of countings in a fixed time window T of a
random process characterised by a uniform probability of occurrence per unit time
λ is distributed according to the Poisson p.d.f.

Solution

Let’s divide the time window T into N equal subranges of duration τ = T/N . For
sufficiently large N , τ will become much smaller than λ−1, so that the probability
of single-event in a given subrange will be given by λτ � 1, while the probability
of double-event (λτ)2 can be neglected. The probability of observing n outcomes
can be computed by using the Binomial law for n positive events (i.e. the number of
single-events in any of the subranges) given N trials, each with success probability
λτ :

Prob [n | N , λ, T ] = N !
(N − n)! n!

(
λT

N

)n (

1 − λT

N

)N−n

(4.56)

Taking the limit N → ∞ such that λT is finite, we get:

lim
N→∞Prob [n | N , λ, T ] = (λT )n

n! e−λT lim
N→∞

N (N − 1) . . . (N − n + 1)

N n
e+λT n

N =

= (λT )n e−λT

n! ≡ μn e−μ

n! = P(n | μ), (4.57)

with μ = λT = E [n] = Var [n].

Bando n. 13153/2009

Problem 4.14 The surface of a given detector is irradiated by a unform flux. The
counting rate on a single channel is ν. Let the sampling time be T . Determine the
probability of having empty events and the probability of having single events.

Solution

The number of events integrated over the sampling time T is distributed with a
Poisson p.d.f.. Indeed, if the flux is uniform, the interaction of each particle with
the detector can be seen as a random process characterised by a uniform probability
of occurrence per unit time, thus giving a Poisson distribution for the number of
interactions in a fixed time window, see Problem 4.13. Hence:

Prob [n = 0] = P(0 | νT ) = e−νT

Prob [n = 1] = P(1 | νT ) = e−νT (νT ) (4.58)
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By measuring the zero-event probability, the flux ν can be measured by simply
inverting the first of Eq. (4.58). Also the single-event probability can be used to
derive ν through the second of Eq. (4.58). The solution is however twofold, as
we have already seen for the analogous problem of measuring the dead time of a
paralyzable system, see Problem 3.38.

Bando n. 13153/2009

Problem 4.15 AMonte Carlo program simulates a scattering process. After running
for some time, a sample of N � 1 events is generated, of which N+ events have
weight w > 0 while N− of events with weight −w. Let the cross section of the
simulated process beσ . Determine the equivalent integrated luminosity of this sample
and the relative uncertainty on the simulated event yield.

Discussion

When a sample consists of N weighted events each with weight wi , i = 1, . . . , N ,
the event yield Y and its variance σ 2

Y are given by:

{
Y = ∑N

i=1 wi

σ 2
Y = ∑N

i=1 w2
i

⇒ σY

Y
=

√∑N
i=1 w2

i
∑N

i=1 wi

. (4.59)

If N � 1, the Law of Large Numbers allows us to approximate the values of Y and
σ 2

Y by using the p.d.f. of the weights w, f (w) (which we assume to be well defined,
i.e. that

∫
dw f (w) = 1). We can therefore write:

{
Y ≈ N E [w] = N μw

σ 2
Y ≈ N E

[
w2

] = N (Vw + μ2
w)

⇒ σY

Y
≈ 1√

N

(

1 + Vw

μ2
w

) 1
2

, (4.60)

where μw and Vw are the mean and variance of the weights w, respectively. As one
can see, the relative uncertainty is always equal or larger than for unweighted events,
the equality being realised when wi ≡ w for any i , i.e. Vw = 0.

The use of weighted MC events is pretty common in HEP analyses. For exam-
ple, when the MC events consists of one or more correlated variables, the use of
event weights allows to modify the conditional distributions compared to the model
used for the generatorion. In some cases, like the simulation of scattering events at
NLO accuracy, or statistical tools like sPlot [8], the events weights can be negative,
although observables should be always associated with positive cross sections.

Solution

The total event yield and the equivalent integrated luminosity of the sample are given
by

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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Y =
∑

i

wi = w (N+ − N−) = w N (1 − 2 f ),

Lint. = Y

σ
= w N (1 − 2 f )

σ
, (4.61)

where we have introduced the fraction of negative events f = N−/N . The mean and
RMS of the weight distributions can be readily computed:

μw = −w f + w (1 − f ) = w (1 − 2 f )

Vw = w2 f + w2 (1 − f ) − w2 (1 − 2 f )2 = w2
[
1 − (1 − 2 f )2

]
.

(4.62)

From Eq. (4.60), we can determine the relative uncertainty on the event yield:

σY

Y
= 1√

N

(
1

1 − 2 f

)

. (4.63)

Therefore, the presence of a fraction f of negative-weight events increases the relative
uncertainty of the simulated sample by a factor of (1 − 2 f )−1 compared to the
Poisson expectation from unweighted events.

Bando n. 1N/R3/SUB/2005

Problem 4.16 Given an event containing four b quarks, what is the probability of
observing at least one lepton if the branching ratio b → X � ν is equal to 20%?

Solution

The b decays are independent from each other. The number n� of leptonic decays
is therefore distributed according to a Binomial law with single-event probability
ε = 0.2, hence:

Prob [n� ≥ 1] = 1 − B(0 | N = 4, ε = 0.2) = 1 − (1 − ε)4 = 59%. (4.64)

Discussion

Thanks to a lifetime of O(10−12 s), B hadrons generated from the hadronisation
of b quarks of sufficiently large momentum give rise to distinctive signatures that
can help discriminate them from jets initiated by lighter quarks or gluons. With
the use of modern vertex detectors, rejection power against light jets as large as
(1 − β)−1 ∼ 100 can be obtained for efficiencies in excess of 1 − α ∼ 50% (we
have used the symbols α and β for the errors of first and second kind, respectively).
See Problem 2.46 for more details. Another distinctive feature of b-initiated jets is
the presence of a charged lepton. Besides the prompt lepton production b → X � ν

mentioned by the exercise, an additional source of charged leptons arises from the
semileptonic decay of charmed mesons produced in the decay chain of the initial

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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B hadrons. Overall, the branching ratio for producing at least one charged lepton is
large as 35% [9].

Suggested readings

For more details on recent b tagging techniques at hadron colliders, the reader is
addressed to Refs. [10, 11]

Bando n. 13705/2010

Problem 4.17 A crystal contains two kinds of impurities A and B in equal amount.
The impurity A absorbs photons without emitting electrons, while the impurity B
absorbes photons by emitting electrons. The absorbtion cross section of A is 99
times larger than the cross section for B. Let the dimension of the crystal be such
that all entering photons get absorbed, and let us assume that 200 photons impinge
the crystal. What is the probability that at least three electrons are emitted?

Solution

Given an input photon, the probability that it gets absorbed by the impurity B is

ε = σB

σA + σB
= 0.01 (4.65)

The number of emitted electrons np.e given N = 200 incident photons is distributed
according to a Binomial law with single-event probability ε. Since ε N = 2 is finite,
we can approximate this distribution with a Poissonian of mean ε N . The probability
of emitting at least three electrons is therefore given by:

Prob
[
np.e. ≥ 3

] = 1 −
2∑

i=0

P(i | εN ) =

= 1 − (0.1353 + 0.2706 + 0.2707) ≈ 32%. (4.66)

Notice that the result obtained by using a Binomial p.d.f. agrees with the Poissonian
estimate to better than 10−5.

Problem 4.18 An experiment measures events containing a pair of particles recon-
structed as electrons. The collected data sample, denoted by PP, is affected by two
sources of background: the first consists of one real electron and one pion mis-
identified as an electron; the second consists of two mis-identified pions. The pion
mis-identification probability f i

1,2 for both reconstructed objects and for each event i
is known from simulation. Two independent data samples, containing, respectively,
exactly one (PF) and exactly zero (FF) reconstructed electrons are also measured.
Assume a prefect identification probability for real electrons. Estimate the total back-
ground yield in the PP sample.
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Solution

Under the assumption that the electron identification probability is perfect, the PF
sample is contaminated by both one- and two-pion events, whereas the FF sample
contains only two-pion events. The probabilities for all possible combinations of
wrong and correct identification of a background events are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Prob [FF | π π ] = (1 − f i
1 )(1 − f i

2 )

Prob [PF | π π ] = f i
1 (1 − f i

2 ) + (1 − f i
1 ) f i

2

Prob [PP | π π ] = f i
1 f i

2

Prob [PF | π e] = 1 − f i
a

Prob [PP | π e] = f i
a

(4.67)

where the index a = 1, 2 refers to the particle not-reconstructed as an electron. We
can express the number of background events in the PP region per event falling in the
FF or PF region by taking the ratio between the respective probabilities. The number
of two-pion events in the PP sample can be therefore estimated as

Nπ π
PP | FF =

∑

i ∈ FF

f i
1 f i

2

(1 − f i
1 )(1 − f i

2 )
. (4.68)

Since the PF sample contains both one- and two-pion events, the quantity

Nπ e+π π
PP | PF =

∑

j ∈ PF

f j
a

1 − f j
a

, (4.69)

where the sum runs over the PF sample, provides the correct background yield in
the PP sample from one-pion events, but it underestimates the contribution from
two-pion events. In particular, by summing together Eqs. (4.68) and (4.69), the con-
tribution from two-pion events would be overestimated because some events get
double-counted. The contribution of two-pion events to the sum in Eq. (4.69) can be
however estimated from the FF sample to be

Nπ π
PP | PF | FF =

∑

i ∈ FF

f i
1

1 − f i
1︸ ︷︷ ︸

PF |FF

f i
2

1 − f i
2︸ ︷︷ ︸

PP | PF

+ f i
2

1 − f i
2︸ ︷︷ ︸

PF |FF

f i
1

1 − f i
1︸ ︷︷ ︸

PP | PF

= 2
∑

i ∈ FF

f i
1

1 − f i
1

f i
2

1 − f i
2

(4.70)

The total background yield in the PP region is therefore given by:

Nπ π
PP | FF

︸ ︷︷ ︸
π π

+ Nπ e+π π
PP | PF − Nπ π

PP | PF | FF
︸ ︷︷ ︸

π e

=
∑

j ∈PF

f j
a

1 − f j
a

−
∑

i ∈ FF

f i
1

1 − f i
1

f i
2

1 − f i
2

. (4.71)
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Notice thatwemade the assumption that themis-identification probabilities factorise.
This exercise illustrates an example of a data-driven technique for estimating the
background contamination in events with mis-identified particles.

4.2 Error Propagation

Error propagation refers to the estimation of the variance of a random variable z
which is a known funtion h of an array of random variables x, whose covariance
matrix V is assumed to be known. The linearised error propagation method is based
on a first-order expansion of the function h around the experimental point x̄:

z = h(x) = h(x̄) +
∑

i

∂i h(x̄) (xi − x̄i ) + . . . (4.72)

Given the linear approximation of Eq. (4.72), the variance of z can be determined as:

Var [z] ≈
∑

i j

∂i h(x̄) Vi j ∂ j h(x̄) (4.73)

Since V is a symmetric positive-definite matrix, Var [z] from Eq.(4.73) is always
positive.

Problems

Problem 4.19 Consider a random variable z = h(x, y), where (x, y) is a pair of
random variables with mean value (x0, y0) and covariance matrix V . Derive an
expression for σ 2

z by assuming that h can be expanded to first order around (x0, y0).
Then, specialise the result to two special cases: h = a x + b y and h = x/y.

Solution

For the case h = a x + b y, the linear expansion of Eq. (4.72) is exact. The gradient
of h is constant and given by ∇h0 = (a, b). Equation (4.73) then gives:

σ 2
z = (a b)

(
σ 2

x ρσxσy

ρσxσy σ 2
y

) (
a
b

)

= a2σ 2
x + b2σ 2

y + 2 a b ρ σx σy (4.74)

For the special case ρ = 0, we get the result σz = (a σx ) ⊕ (b σy).
For the case h = x/y, the gradient of the function at the mean value x0, y0 is given

by ∇h0 = y−1
0 (1,−x0/y0). Equation (4.73) then gives:
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σ 2
z = 1

y20
(1 − x0/y0)

(
σ 2

x ρσxσy

ρσxσy σ 2
y

) (
1

−x0/y0

)

=

= 1

y20

[

σ 2
x − 2

x0
y0

ρσxσy + σ 2
y

x2
0

y20

]

= z20

[(
σx

x0

)2

+
(

σy

y0

)2

− 2ρ

(
σx

x0

)(
σy

y0

)]

(4.75)

Notice that this result could have been obtained directly from Eq. (4.75) by applying
the propagation of error to ln z = ln x − ln y and noticing that d ln z = dz/z. For the
special case ρ = 0, we get the result σz/z = (σx/x) ⊕ (σy/y).

Suggested readings

There is a large number of textbooks dedicated to statistical methods for particle
physics. For example, the reader is addressed to Refs. [5, 12] for a more detailed
discussion.

Bando n. 1N/R3/SUB/2005

Problem 4.20 After having collected an integrated luminosity Lint = 10 fb−1, an
analysis of B0 → J/Ψ K 0

S , with J/Ψ → �+�− and KS → π+π−, selects N = 100
candidate events. By using NMC = 1000 simulated events, the selection efficiency is
estimated to be ε = 37%. What are the measured BR, the related statistical uncer-
tainty, and the systematic uncertainty due to having simulated too fewevents?Assume
σB0 ≈ 1 nb.

Discussion

Given a data sample of N scattering events corresponding to an integrated luminosity
Lint, the measured cross section is

σ = N − NB

εLint
, (4.76)

where NB is the estimated background yield in the data sample and ε is the total
efficiency (including the acceptance) of the experiment to the signal. The latter is
usually estimated by using a Monte Carlo simulation of the signal process.

Solution

By using Eq. (4.76), the branching ratio for B0 → J/Ψ KS can be measured as:

BRJ/Ψ K 0 = σ�+ �− π+ π−

σB0 BRπ+π− BR�+�−
= N

εLint σB0 BRπ+π− BR�+�−
=

= 100

0.37 · 10 fb−1 · 1 nb · 0.69 · (0.0596 × 2)
= 3.3 × 10−4, (4.77)
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where we have used the PDG values for BRπ+π− and BR�+�− [9]. Under the assump-
tion that the uncertainty on the integrated luminosity andon the inclusive cross section
are negligible, the relative uncertainty on the branching ratio can be estimated from
Eq. (4.75):

δBRJ/Ψ K 0

BRJ/Ψ K 0
≈

√(
1√
N

)2

+
(

δε

ε

)2

, (4.78)

where the first term is the pure statistical uncertainty, while the second represent
a systematic uncertainty. The latter be evaluated by using the expectation from a
Binomial distribution:

(
δε

ε

)2

= NMC ε (1 − ε)

N 2
MC ε2

= (1 − ε)

NMC ε
. (4.79)

Putting everything together, we thus have:

δBRJ/Ψ K 0

BRJ/Ψ K 0
≈

√
1

100
+ 1 − 0.37

1000 · 0.37 ≈ 11%. (4.80)

The extra uncertainty due to the limited size of MC simulated events is therefore
11% − 1/

√
100 ≈ 1%.

Suggested readings

The decay channel B0 → J/Ψ K 0
S (branching ratio 8.7 × 10−4 [9]) plays an impor-

tant role in B physics as a tool to measure one of the angles of the unitarity triangle.
More precisely, the propagation of a physical neutral B meson initially produced as
a B0 or B̄0 features time oscillations due to B0 − B̄0 mixing. The amplitude of such
oscillations as measured via the J/Ψ K 0

S decay, a channel which can be produced by
both neutral B states, provides a direct measurement of the C P-violating parameter
sin 2β. See Problem 5.43 for more details on this subject.

Bando n. 13705/2010

Problem 4.21 The ratio between neutral and charged current interactions from neu-
trinos on nucleus are measured by two independent experiments, CTF at Fermilab
and CDHS at CERN, to be: CTF: 0.27 ± 0.02 and CDHS: 0.295 ± 0.01. What is the
combined result? Are the two measurements consistent with each other?

Discussion

Point-estimation from a combination of measurements with covariance matrix V
can be performed by using the least squares method, which coincides with the ML
estimator for normally distributed variables. The least squares estimator of the mean
of an ensemble of measurements is the solution of the equation

http://dx.doi.org/10.1007/978-3-319-70494-4_5
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0 = ∂

∂μ

[
1

2
(x − Aμ)TV −1(x − Aμ)

]

(4.81)

⇒
⎧
⎨

⎩

μ̂ = (
ATV −1A

)−1
ATV −1 x =

∑
i j(V −1)i j

xi
∑

i j(V −1)i j

σ−2
μ̂

= ATV −1A = ∑
i j

(
V −1

)
i j

(4.82)

where we have defined E [x] = Aμ = (1, 1, . . . , 1)Tμ. For the special case of uncor-
related measurements, V −1 is diagonal and the formula simplifies to the well-known
result:

μ̂ =
∑

i
xi

σ 2
i∑

i
1
σ 2

i

, σ 2
μ̂ = 1

∑
i

1
σ 2

i

. (4.83)

Solution

The combined measurement can be obtained by using the least square estimator of
Eq. (4.83):

μ̂ ± σμ̂ = 0.290 ± 0.009. (4.84)

The compatibility between the two measurements can be quantified by using the χ2

test-statistic t defined as:

t =
∑

i

(
xi − μ̂

)2

σ 2
i

= (0.27 − 0.290)2

(0.02)2
+ (0.295 − 0.290)2

(0.01)2
= 1.25. (4.85)

If the measurements are nornally distributed, the test statistic t is distributed like a χ2

with n = 1 degree of freedom. From tabulated tables, one can find that the p-value
for this experiment is 26%. The two measurements are therefore well compatible
with each other.

Suggested readings

For a more formal treatment of methods for point-estimation, the reader is addressed
to Chap.7 of Ref. [5].

Bando n. 13153/2009

Problem 4.22 An invariant mass distribution shows a Gaussian peak centered at a
mass M , it contains N events, and has awidth at halfmaximumequal to D. Determine
the precision on the mass measurement M .
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Solution

For a Gaussian distributed variable, the relation between its standard deviation and
FWHM is given by Eq. (2.103). The combination of N independent measurementes
gives an uncertainty on the mean:

σM = σ√
N

= D

2.35
√

N
. (4.86)

Bando n. 18211/2016

Problem 4.23 A sample of 2500 measurements of a quantity x are normally dis-
tributed. From this sample, a mean value of x̄ = 34.00 ± 0.06 (68%CL) is obtained.
What is the probability that a subsequent measurement results in a value x ≥ 37?

Solution

The variable x̄ is Gaussian distributed, see Problem 4.9, hence its two-sided confi-
dence interval at CL = 1 − α = 68% has a width of 2 σ . The latter is related to the
standard deviation of the single-measurement, σx , by

σx̄ = σx√
N

⇒ σx = 0.06 · √
2500 = 3.0 (4.87)

Since σx̄/σx � 1, we can assume the mean value μ to be x̄ . The probability p that a
Gaussian variable of mean μ = x̄ fluctuates more than (37 − x̄)/σx = 1.0 standard
deviations from its mean is p = α/2 = 16%.

Bando n. 13705/2010

Problem 4.24 A radioactive source emits two kinds of uncorrelated radiation A and
B. This radiation is observed through a counter which is able to distinguish A from
B. In a given time interval, the countings are NA = 200 and NB = 1000. What is
the statistical uncertainty on the ratio R = NA/NB? In case the observation time
were reduced by a factor of 250, do you think that the new ratio r = nA/nB would
represent an unbiased estimator of the true ratio between the two activities? In case
of negative answer, how would you correct for it?

Solution

The variable R thus defined coincides with the ML estimator for the parameter ρ =
μA/μB. This can be easily verified. Indeed, the likelihood of the two observations
can be parametrised in terms of ρ and one of the two mean counting rates, e.g. μB,
as:

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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L(NA, NB; ρ,μB) = e−μB(1+ρ) ρNA μ
NA+NB
B

NA! NB! . (4.88)

Setting the derivatives of L with respect to both parameters to zero, one gets the
expected result for the ML estimators:

R̂ = NA/NB, μ̂B = NB. (4.89)

The asymptotic properties of the ML estimator [5] guarantee that R̂ is an unbiased
estimator, if a large number of observations are made. For just one experiment, this
is in general not the case, see e.g. Chap. 7 of Ref. [5]. However, since the variance of
the individual rates is known, it is possible to estimate the variance of R by standard
error propagation, which gives the result:

σR

R
=

√(
σA

NA

)2

+
(

σB

NB

)2

=
√

1

NA
+ 1

NB
= 7.7%, (4.90)

see Eq. (4.73). This result assumes that the function R(NA, NB) can be expanded
around the mean values μA and μB, and that the relative variations of the countings
of order σA/A and σB/B around these values are small. This assumption breaks up
if at least one of the two countings is small. In particular, if the observation time gets
reduced by a factor of 250, the mean counting rates for A and B will be of order 1
and 4, respectively, thus invalidating the estimate of Eq. (4.90). The variance of the
estimator r will be larger.

A possible way to overcome this problem is to repeat the measurements N � 1
times, which reduces the uncertainty on the estimator of the mean number of decays
nA and nB by a factor of 1/

√
N : for sufficiently large values of N , the ratio r = nA/nB

becomes again well behaved.

4.3 Confidence Intervals

In the literature, one can find two approaches to the definition of confidence levels,
that follow either the frequentist or Bayesan approach. Only the former is considered
here. According to the frequentist paradigm, the parameter μ is said to be contained
inside a confidence interval Iμ(X) at a confidence level CL = 1 − α if:

Prob
[
μ ∈ Iμ(X)

] = α, (4.91)

irrespectively of the true (and possibly unknown) value of μ. In almost all the cases,
this is only possible inference on the true value of the parameterμ that an experimen-
tal can provide. The quantity α, which is coventional and should be chosen a priori,
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quantifies the amount of error of the first kind associated with the measurement, i.e.
the probability that the true value does not lie within the confidence interval. For a
more refined discussion on the subject, the reader is addressed to dedicated textbooks
like Refs. [5, 12].

Problems

Bando n. 13153/2009

Problem 4.25 What is the correct statistical approach to assess the efficiency of a
detector and of its related uncertainty?

Solution

The efficiency of a detector is defined as the number of output signals M per input
events N , i.e. ε̂ = M/N , where ε̂ is the estimator of the unknown detector efficiency
ε which is assumed to be independent of the time of arrival of the signals or their
rate. The number of output signals for a fixed value of N is distributed according to
a binomial law:

B(M | N , ε) = N !
M ! (N − M)!ε

M (1 − ε)N−M . (4.92)

A frequentist confidence interval Iε at the confidence level CL = 1 − α can be built
by using the Neyman construction [13], i.e. as the interval of ε values for which the
p-value corresponding to the measured value M is smaller than α (for one sided-
intervals), or α/2, for symmetric and double-sided intervals. An example of Neyman
construction for a generic confidence interval is shown in Fig. 4.3.

Suggested readings

The concept of confidence interval is comprehensively illustrated in Ref. [14].

Problem 4.26 Determine the one-sided 95%CI on the efficiency ε of a detector that
reconstructs each of the N pulses sent in, for the cases N = 50 and N = 5000.

Solution

Referring to Problem 4.25 with M = N , the best estimate for the efficiency is ε̂ = 1
and the one-sided confidence interval at a given confidence level CL = 1 − α is given
by

Iε =
[
α

1
N , 1

]
=

{
[0.9418, 1.0] N = 50

[0.9994, 1.0] N = 5000
(4.93)
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Fig. 4.3 A generic confidence interval construction. For each value of μ, one draws a horizontal
acceptance interval [x1, x2] such that Prob [x ∈ [x1, x2]|μ] = α. Upon performing an experiment to
measure x and obtaining the value x0, one draws the dashed vertical line through x0. The confidence
interval [μ1, μ2] is the union of all values of μ for which the corresponding acceptance interval is
intercepted by the vertical line (from Ref. [14])

By construction, such intervals contain the true value with a probability CL = 95%
regardless of the true, unknown value of ε.

Problem 4.27 A counting experiment measures the number of outcomes of a
process of unknown yield μ. Compare the 95% CL upper limit on μ as a func-
tion of the experimental outcome N obtained by using the Neyman construction
with the confidence interval at the same confidence level obtained by using Wilks’
approximation of the negative log-likelihood function.

Solution

The upper limit at 1 − α = 95% CL, denoted by μul, can be obtained by using the
Neyman construction of confidence levels, i.e.:

α = Prob[n ≤ N ] =
N∑

n=0

exp [−μul] μn
ul

n! . (4.94)

Under the assumption that only one process contributes, the likelihood of the data is
given by

L(n | μ) = exp [−μ] μn

n! , (4.95)
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Table 4.1 The upper limits at 95% CL on the mean μ of a Poisson process as a function of the
outcome N , obtained by using the classical Neyman construction (second column) and by using
the asymptotic approximation of the negative log-likelihood ratio (third column)

N Neyman Wilks Rel. diff. (%)

1 4.75 3.65 23

2 6.30 5.31 16

5 10.5 9.6 8

10 17.0 16.1 5

20 29.1 28.3 3

50 63.3 62.6 1

100 118.1 117.4 0.6

Fig. 4.4 The negative
log-likelihood ratio q(μ)

from a Poisson process with
mean μ for different values
of the outcome N . For
illustration, the functions
q(μ) are compared with their
parabolic approximation

from which one obtains the intuitive result for the ML estimator: μ̂ = N . Wilks’
theorem states that the negative log-likelihood ratio q is asymptotically distributed
like a χ2. For the experiment under consideration, one has:

q(μ) = −2 ln
L(N | μ)

L(N | μ̂)
= −2 (N − μ) − 2 N log

μ

N
. (4.96)

If q(μ) were distributed like a χ2 with one d.o.f., the upper limit at 95% CL would
be given by the root of the solution q(μul) = 2.70. Table4.1 reports the upper limits
at 95% CL obtained by using the two alternative approaches. The values have been
obtained by using the program reported in Appendix 4.3. Already for N = 10, the
asymptotic approximation is better than 5%. Indeed, for large values of N the Poisson
distribution approaches aGaussian, see Problem4.11,which satisfiesWilks’ theorem
by construction. For illustration, Fig. 4.4 shows the function q(μ) for three particular
values of N , and compares them to the respective parabolic approximation.

Bando n. 13707/2010
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Problem 4.28 In a Cherenkov counter, on average nγ = 20 photons are produced
per incident particle. If the efficiencyof conversionof eachphoton into photoelectrons
is εQ = 20%, given N = 1000 incoming particles, what is the mean number of
particles (and relative uncertainty) that are undetected?

Solution

The number of p.e. produced per incident particle is distributed like a Poissonian
with mean εQ nγ . The probability of emitting at least one p.e., which is the condition
for the particle to be detected, is therefore given by:

ε = Prob
[
np.e. > 0

] = 1 − P(0 | εQ nγ ) = 1 − e−εQ nγ = 0.982. (4.97)

Given N incoming particles, the number of detected particles is distributed according
to a binomial p.d.f., see Eq. (4.92), with efficiency ε given by Eq. (4.97) and variance
N ε (1 − ε). For large values of N such that ε N is finite, the binomial distribution
approaches a Poissonian of mean εN , which approaches a Gaussian for large values
of ε N , see Problem 4.11. We can therefore use the interval with boundaries ε N ±√

N ε (1 − ε) as an estimator of the 68% quantile for ε, i.e.

N̄ = N ε ± √
N ε (1 − ε) = 982 ± 4 at 68%CL. (4.98)

Appendix 1

This computer program computes the frequentist 95% CL upper limit (Neyman con-
struction) and the approximate 95%CL upper limit from the asymptotic properties of
the negative log-likelihood ratio (Wilks’ theorem), for a Poisson process of unknown
mean value μ, see Problem 4.27. A numerical scan is performed in order to find the
appropriate isocontour levels.

import math

# grid points for numerical scan

nmax=1000

# the\index{Poisson density} Poisson p.d.f.

def pois(n=1,mu=1):

return math.exp(-mu)*math.pow(mu, n)/math.factorial(n)

def get_CL_neyman(n=1, CL=0.95):

alpha = 1-CL

muL = n

muH = n+3*math.sqrt(n)+5 # a ’reasonable’ upper limit
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step = (muH-muL)/nmax

for mu_step in range(nmax):

mu = muL+step*mu_step

prob = 0.0

for x in range(n+1):

prob += pois(n=x, mu=mu)

if prob<alpha:

break

return [mu, prob]

def get_CL_wilks(n=1., chi2=2.705):

muL = n

muH = n+3.*math.sqrt(n)+5.

step = (muH-muL)/nmax

for mu_step in range(nmax):

mu = muL+step*mu_step

nll = -2*(n-mu) - 2*n*math.log(mu/n)

if nll > chi2:

break

return [mu,nll]

# run!

for n in [1,2, 5, 10, 20, 50, 100]:

ney = get_CL_neyman(n=n, CL=0.95)

wil = get_CL_wilks(n=n, chi2=2.705)

print n, ney[0], wil[0], (wil[0]-ney[0])/ney[0]
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Chapter 5
Subnuclear Physics

Abstract The problems collected in the fifth chapter deal with particle physics from
a more theoretical perspective. They are mostly concerned with the phenomenolog-
ical predictions of Standard Model of particle interactions. After introducing the
concept of symmetry, which is of cardinal importance in the formulation of a good
theory, the proposed exercises will focus on the physics of electroweak and strong
interactions. The two last sections are dedicated to flavour physics and to the Higgs
boson.

5.1 Conservation Laws

The principles of quantum mechanics and the invariance of physics under trans-
formations of the Poincaré group impose stringent constraints on the mathematical
structure of a consistent theory. Nature preferentially realises a number of additional
symmetries which, once introduced in the theory, provide further constraints. By
Noether’s theorem, the invariance of the Lagrangian L under a group of transfor-
mations gives rise to a conserved current, or, in quantum-mechanical language, to
a conserved quantum number. Classifications of states in terms of their conserved
quantum numbers proves of the greatest help to give a rationale to the experimental
observations.

Problems

Problem 5.1 Show that rotation-invariance and Bose–Einstein symmetry implies
that a spin-1 particle cannot decay into two photons.

Solution

The quantum-mechanical amplitude for the decay X → γ γ , with JX = 1 must be
a Lorentz-scalar and linear in the polarisation vectors of the particle X and of the
two photons. We denote these vectors in the centre-of-mass by η, ε1, and ε2. The
other independent vector with a defined 1 ↔ 2 symmetry is the relative momentum
k = k1 − k2. Furthermore, for amassless spin-1 particle, theKlein–Gordan equation

© Springer International Publishing AG 2018
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∂2
ν Aμ = 0 implies ε · k = 0. Out of these four vectors, the only combinations linear
in the polarisation vectors and with a definite symmetry with respect to the two
photon indices are:

(ε1 · ε2)(η · k)

(ε1 × ε2) · η, (ε1 × ε2) · (η × k), (ε1 × ε2)(η · k) (5.1)

A term like (ε1 × k) · (ε2 × k)(η · k) is equivalent to the first of Eq. (5.1) modulo a
function of k2. The first, second, and fourth are odd under 1 ↔ 2 exchange, whereas
Bose–Einstein symmetry requires the amplitude to be symmetric under photon label
exchange. The third combination is identically zero since:

(ε1 × ε2) · (η × k) = εi jk ε
j
1ε

k
2 εilm ηl km = (δl

jδ
m
k − δl

kδ
m
j )ε

j
1 εk

2 ηl km =
= (ε1 · η)(ε2 · k) − (ε2 · η)(ε1 · k) = 0. (5.2)

Since no amplitude consistent with the selection rules can be constructed, the decay
must be forbidden.

Discussion

This result, known as Yang’s theorem, has been advocated at the time when the first
evidence of the 125 GeV Higgs boson was being gathered in the diphoton channel
H → γ γ as a proof that the particle had to be a boson, since it decays to a pair of
spin-1 particles, and furthermore J �= 1. This theorem also implies that the decay of
the neutral pseudo-vector mesons, like φ0, ω0, ρ0, J/Ψ , Υ , to a pair of photons is
forbidden, as well as the radiative decay Z0 → γ γ .

Suggested Readings

This result was first formalised by Yang in 1950, see his original paper [1].

Bando n. 18211/2016

Problem 5.2 Which of the following electromagnetic transitions:

1

2

+
→ 1

2

−
0+ → 0− 3

2

+
→ 1

2

−
2+ → 1+ 1+ → 0+, (5.3)

are allowed in electric dipole (E1) or magnetic dipole (B1) approximation?

Discussion

The electric and magetic dipole approximations consist in assuming an interaction
Hamiltonian of the form
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HE1 = e r · E, HB1 = − e

2m
(L + gS) · B. (5.4)

Under rotations, both r and L transform as vectors. According to the Wigner–Eckart
theorem, the matrix elements of a tensor operator T k

q between states of definite total
momentum take the form:

〈
J m|T k

q |J ′ m ′〉 = C J ′
m ′

k
q

J
m

〈
J ||T k ||J ′〉
︸ ︷︷ ︸
reduced element

, (5.5)

where C j1
m1

j2
m2

J
M are the Clebsh–Gordan coefficients, defined by the relation:

| j1 m1〉| j2 m2〉 =
∑

J

C j1
m1

j2
m2

J
m1+m2

| j1 j2 | J m1 + m2〉. (5.6)

For the case j1 = 0, j2 = 1, theClebsh–Gordan coefficients vanish because the tensor
product of two states with total angular momentum zero does not overlap with states
of angular momentum one, and indeed:

C j1
m1

j2
m2

0
0 = (−1) j1−m1

1√
2 j1 + 1

δ j1 j2δm1 m2 . (5.7)

Hence, for vector operators (k = 1), the matrix elements between states with J = 0
vanish: the transition 0 → 0 cannot occur through dipole operators. The other selec-
tion rule for E1 and B1 transitions between states of definite total angular momen-
tum is:

ΔJ = 0, ±1, Δm J = 0, ±1. (5.8)

While r is a proper vector, L and S are pseudovectors. This implies an important
selection rule: E1 transitions change the parity of the state, whereas B1 transitions
do not.

Solution

The first and third transitions have ΔJ = 0, 1 and involve a change in parity: they
are therefore compatible only with a E1 transition. The fourth and fifth haveΔJ = 1
and do not change parity: they must be B1 transitions. The second one is forbidden
for both transitions: it has to proceed through scalar or tensor operators.

Suggested Readings

The Wigner–Eckart theorem is discussed in several textbooks of classical Quantum
Mechanics. See Appendix B of Ref. [2] for a compendium of formulas.

Bando n. 18211/2016
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Problem 5.3 Why is the decay n → p e− forbidded even without postulating
lepton-number conservation?

Solution

A putative n → p e− decay would violate angular momentum conservation, i.e.
invariance of the Hamiltonian under rotations. Indeed, a state made of two spin-1/2
particles can only have integer total angular momentum, while the initial state has
J = 1/2.

Discussion

Lepton-number is an accidental symmetry of the SM Lagrangian, see also
Problem 5.47, bringing to stringent selection rules on the decays of hadrons.
The most stringent limits on lepton-number violating decays of neutrons into an
antilepton (e+, μ+) and a charged meson (π−, ρ−, K −) have been provided by the
water-Cherenkov IMB-3 experiment at the Fairport Salt Mine [3], giving lower
bounds on the lifetimes of order 1032 years at 90% CL. The most stringent lim-
its on lepton-violating proton decays come from the Super-Kamiokande experiment,
see Problem 2.29, ranging between 1033 and 1034 years at 90% CL, depending on
the channel under study [4]. In several BSM extensions, like GUT theories where
the quark and lepton doublets are embedded into multiplets of higher dimensions,
the lepton number L and baryon number B are not individually conserved.

Another reaction which would bring to an evidence of lepton-number violation is
the neutrinoless-double β decay (0νββ). In this case, the lepton number symmetry
would be broken by the Majorana mass term.

Suggested Readings

For more details on the limits on the nucleon lifetimes, the reader is addressed to
Refs. [3, 4].

Problem 5.4 What is the total wavefunction of deuterium? The binding energy of
deuterium isBD = −2.22MeV. Argue why this implies that the mass of the neutron
has to be fine-tuned compared to the proton and electron mass at the 10−3 level to
allow for star nucleosynthesis.

Solution

The determination of the total wavefunction of deuterium (D) relies on symmetry
arguments and experimental observations. First, one notices that a proton-neutron
state can either have I = 0 (Ψ ∝ |pn〉 − |np〉) or I = 1 (Ψ ∝ |pn〉 + |np〉). The first
state is antisymmetric under exchange p ↔ n, the second is symmetric. Deuterium
is a mass eigenstate of the strong Hamiltonian, hence it must have a definite value of

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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I . Let us assume I = 1. In this case, one should expect two more degenerate states,
|pp〉 and |nn〉, which are not observed neither as stable particles, nor as resonances in
nucleon-nucleon scattering. Hence, I = 0. Since the deuterium wavefunction needs
to be overall antisymmetric under p ↔ n (Fermi–Dirac statistics), the rest of the
wavefunction needs to be symmetric. For a pair of spin-1/2 particles, the symmetry
is (−1)L(−1)S+1. The observation that J (D) = 1 implies three possible values for
the angular momentum L:

1. L = 0, S = 1: the symmetry is +1;
2. L = 1, S = 0, 1: the symmetry is +1 for S = 0, and −1 for S = 1; hence only

the former is acceptable;
3. L = 2, S = 1: the symmetry is +1;

Therefore, deuterium can be either a superimposition of 3S1 and 3D1, or a pure 1P1

state: mixing between the three would result in a state of undefined parity, since
P = (−1)L , which is not possible since the strong dynamics conserves parity. A
pure L = 1 state is however discarded by the observation that the nuclear magnetic
moment of deuterium agrees within ≈2% with the sum of the proton and nuclear
magnetic moments, which is the expectation from a S = 1 state (aligned spins).
Finally, the observation of a finite quadrupole moment requires the presence of a
small fraction of 3D1, hence:

ΨD = |pn〉 − |np〉√
2

×
(
α|3S1〉 +

√
1 − α2|3D1〉

)
.

Coming to the fine-tune question, we notice that deuterium plays a key role in
the nuclear synthesis occurring in stars, since the first exothermic reaction towards
helium synthesis is:

p p → D e+ νe.

This reaction can take place provided that:

2m p > m D + me = m p + mn − BD + me ⇔ (mn − m p + me) < 2.22 MeV.

This inequality is indeed satisfied, since mn − m p + me ≈ (1.3 + 0.5) MeV =
1.8 MeV. However, if only the neutron mass had been only 0.4 MeV heavier than
what it is, the fusion reaction would be endothermic. One can also notice that a
neutron mass smaller than 0.8 MeV compared to its nominal value, would make the
decay n → p e− ν̄e not possible, with dramatic implications for nucleosynthesis.
We can therefore conclude that the neutron mass is fine-tuned for nuclear synthesis
to better than O(1 MeV)/mn ≈ 0.1%.

Problem 5.5 Consider a heavy nucleus A
Z X decaying to a lighter nucleus A′

Z ′Y plus
additional particles. The reaction actually involves a neutral atom. Write down the
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reaction in terms of the initial nucleus and of its decay products for the following
decays, together with the equation for the Q-value:

• β− decay
• β+ decay
• α decay
• electron capture (EC)

Solution

Let’s denote the atomic mass of the neutral atom by M , and the binding energy
of the atomic electrons by Be. After a nuclear decay, the atom is in an excited or
incomplete electronic configuration,M ∗, since the electron orbitals must also adapt
to the new nuclear configuration. Unless the electron belongs to a low-lying level
(K -shell), this binding energy is negligible compared to the other mass scales, see
e.g. Eq. (2.24). We then have:

β− decay : A
Z X → A

Z+1Y e− ν̄e (5.9)

M (A
Z X) > M ∗(A

Z+1Y ) + me = M (A
Z+1Y ) + Be

β+ decay : A
Z X → A

Z−1Y e+ νe (5.10)

M (A
Z X) > M ∗(A

Z−1Y ) + me = M (A
Z−1Y ) − Be + 2me

α decay : A
Z X → A−4

Z−2Y α (5.11)

M (A
Z X) > M (A−4

Z−2Y ) + M (42He)

EC : A
Z X → A

Z−1Y νe (5.12)

M (A
Z X) > M ∗(A

Z−1Y ) = M (A
Z−1Y ) + BK

e

Discussion

The EC is energetically favoured compared to the β+ decay, in the sense that if β+
is allowed, then also EC must be possible with larger Q-value. This can be easily
seen from the equations above, since BK

e ≈ 10 ÷ 100 KeV � 2me ≈ 1 MeV.

Suggested Readings

For an introduction to nuclear decays, the reader is addressed to Chap.1 of Ref. [5].

Bando n. 1N/R3/SUB/2005

Problem 5.6 A π− beam on a polarised target produces Λ baryons, which are
analysed in momentum p and polarisation ε. Explain how this measurement allows
one to test if the dynamics conserves parity.

http://dx.doi.org/10.1007/978-3-319-70494-4_2
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Discussion

A standardmethod to test the parity-conservation of strong interactions is through the
detection of an asymmetry between the inclusive cross sections when the polarisa-
tions of the beam or of the target is flipped. When strange baryons are produced, like
Λ or Σ , their polarisation can be measured from the distribution of the decay prod-
ucts in the centre-of-mass. Since the Λ and Σ baryons decay by the parity-violating
electroweak interaction, the centre-of-mass angle between the decay products and
the baryon momentum, taken as quantisation axis, is distributed as

1

Γ

dΓ

dΩ∗ = 1 + α PL cos θ∗, (5.13)

where α is determined by the V − A interaction, while PL is the longitudinal polar-
isation of the baryon. When the polarity of the outgoing hadrons cannot be analysed
through their decay products, as it is the case for protons and neutrons, the mea-
surement of a left-right asymmetry with respect to a transverse polarisation, which
is instead compatible with invariance under parity, can be used to measure the level
of longitudinal polarisation: the latter can be turned into a transverse polarisation by
means of resonant magnetic fields.

Solution

The polarisation of the Λ baryons can be extracted from the distribution of the N π

decay angle in the centre-of-mass according to Eq. (5.13). If parity is conserved at the
production level, the Λ baryons should not be longitudinally polarised. Only trans-
verse polarisation is allowed, if parity needs to be conserved. Indeed, a polarisation
orthogonal to the scattering plane,

PT = 〈S · n̂〉, with n̂ = p × p′

|p × p′| , (5.14)

is unaffected by the parity operation, since n̂ → n̂. On the contrary, a longitudinal
polarisation PL , i.e. a polarisation onto the plane spanned by p and p′ changes sign
under parity. Hence, and indication of longitudinal polarisation would indicate that
parity is violated by the production dynamics.

Suggested Readings

The use of Λ and Λ̄ particles as polarimeters has been explored by the ALEPH
Collaboration in e+ e− events at the Z0 peak [6]. Since the neutral-weak interactions
are parity violating, the producedΛ (Λ̄) developed a negative (positive) longitudinal
polarisation, |PL | ≈ 0.32, a leftover of the preferred helicity state of the left-handed



280 5 Subnuclear Physics

s (s̄) quark. See Ref. [7] for a broader discussion on the experimental tests of parity
violation.

Problem 5.7 Determine the C , P , and C P eigenvalues for a particle-antiparticle
bound state for both spin-0 and spin-1/2 particles.

Solution

We can use Landau’s rule, which relates the properties of transformation of particle-
antiparticle bound states in a given configurationof spin S andorbital angularmomen-
tum L to the spin-statistics properties of the constitutents. For a spin-0 particle-
antiparticle state, we have:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P = (−1)L

︸ ︷︷ ︸
p↔p′

+1︸︷︷︸
(1)↔(2)

= (−1)L

︸ ︷︷ ︸
p↔p′

C︸︷︷︸
b†↔d†

, C = (−1)L
⇒ C P = +1. (5.15)

For a spin-1/2 particles-antiparticle state, we have instead:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P = (−1)︸︷︷︸
ηP =−η̄P

(−1)L

︸ ︷︷ ︸
p↔p′

= (−1)L+1

−1︸︷︷︸
(1)↔(2)

= (−1)L

︸ ︷︷ ︸
p↔p′

C︸︷︷︸
χ↔χ̄

(−1)S+1

︸ ︷︷ ︸
s↔s′

, C = (−1)L+S
⇒ C P = (−1)S+1.

(5.16)

In Eq. (5.16), we have used the fact that, for Dirac fermions, particle and antiparticles
are assigned opposite parity.

Discussion

Among the others, these properties imply selection rules on the allowed decay of
mesons, which are q q̄ bound states. Equation (5.16) applied to the positronium,
motivates the existence of two positronium states of different lifetimes. Indeed, for
S = 0 one hasC = +1 for the ground state L = 0. Since the photon carriesC = −1,
the parapositronium (“para” = antiparallel spins), can only decay to two photons,
with a width:

Γ (p-Ps → γ γ ) = me α5

2
= 8.0 × 109 s−1. (5.17)

For S = 1, the ortopositronium (“orto” = parallel spin) has C = −1, hence it can
only decay to 3γ with a smaller width
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Γ (o-Ps → γ γ γ ) = 2(π2 − 9)

9π

me α6

2
= 7.2 × 106 s−1. (5.18)

The fact that the o-Ps → γ γ is forbidden is also a consequence of Yang’s theorem,
see Problem 5.1.

Suggested Readings

The reader is addressed to Ref. [8] for more application of these selection rules
and for the derivation of the parapositronium decay width from the solution of the
Schroedinger equation of the hydrogen atom.

Problem 5.8 Analyze the decay of the η0, ρ0, ω0, φ0 mesons into two and three
pions in terms of the P , C , I , and G symmetry.

Discussion

The strong interaction conserves parity, charge conjugation, isospin, and, hence,
G-parity. The latter is defined as

G = C ei π I2 , (5.19)

i.e. as the charge conjugation operation followed by a rotation of 180◦ by one of
the two generators of isospin that are not diagonal (here taken to be I2). Remember
that SU (3) has rank N − 1 = 2, hence it admits two diagonal generators, which
are chosen to be I3 and Y . The electromagnetic interaction conserves parity, charge
conjugation, but violates isospin I , although it preserves the third component, I3,
see Problem 5.9. As a consequence, G-parity is also violated. The charged-current
interaction does not conserve either of these symmetries. In particular, it maximally
violates P and C , but conserves C P , at least at leading-order. As for isospin, it
behaves as a combination of ΔI = 1/2 and I = 3/2 operators.

For a fermion-antifermion bound state with orbital momentum L , spin S, and
isospin I , we have:

P = (−1)L+1, C = (−1)L+S, G = (−1)L+S+I (5.20)

see Problem 5.7, which gives to the assignments J C PG(η0) = 0+−+, J C PG(ρ0) =
1−−+, and J C PG(ω0, φ0) = 1−−−. A final state with orbital momentum L has orbital
parity (−1)L . For n = 3 pions, one has to consider the angular momentum of each
pair of pions in their centre-of-mass frame, L12, and the angular momentum of the
pair with respect to the third pion, L3. A particle with J = 1 decaying to three pions
can thus have both values of parity. A final state containing n pions has G = (−1)n .
By using these rules, and remembering that J C P(π) = 0+−, we can determine the
P , C , G, and I numbers of the initial and final states.
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Table 5.1 P , C , G, and I eigenvalues of the initial and final states for the decay of the neutral light
mesons into two and three pions

Decay P C G I

η0 → π0 π0 (−1) �= (−1)2(−1)0 (+1) = (−1)0 (+1) �= (−1)2 0 = 0, 2

η0 → π+ π− (−1) �= (−1)2(−1)0 (+1) = (−1)0 (+1) = (−1)2 0 = 0, 1, 2

η0 → π0 π0 π0 (−1) = (−1)3(−1)0 (+1) = (−1)0 (+1) �= (−1)3 0 = 0, 1, 2, 3

η0 → π+ π− π0 (−1) = (−1)3(−1)0 (+1) = (−1)0 (+1) �= (−1)3 0 = 0, 1, 2, 3

ρ0 → π0 π0 a (−1) = (−1)2(−1)1 (−1) �= (−1)0 (+1) = (−1)2 1 �= 0, 2

ρ0 → π+ π− (−1) = (−1)2(−1)1 (−1) = (−1)1 (+1) = (−1)2 1 = 0, 1, 2

ρ0 → π0 π0 π0 (−1) = ±1 (−1) �= (−1)0 (+1) �= (−1)3 1 = 1, 3

ρ0 → π+ π− π0 (−1) = ±1 (−1) = (−1)1 (+1) �= (−1)3 1 = 0, 1, 2, 3

ω0, φ0 → π0π0 a (−1) = (−1)2(−1)1 (−1) �= (−1)0 (−1) �= (−1)2 0 = 0, 2

ω0, φ0 → π+π− (−1) = (−1)2(−1)1 (−1) = (−1)1 (−1) �= (−1)2 0 = 0, 1, 2

ω0, φ0 → π0π0π0 (−1) = ±1 (−1) �= (−1)0 (−1) = (−1)3 0 �= 1, 3

ω0, φ0 → π+π−π0 (−1) = ±1 (−1) = (−1)1 (−1) = (−1)3 0 = 0, 1, 2, 3
aForbidden by Bose–Einstein symmetry

Solution

The results for the decay of the neutral pseudo-scalar and vector mesons into pions
are reported in Table5.1. The main features to be noted are:

• the η0 decay to two pions violates P , hence it cannot occur through neither the
strong nor the electromagnetic interaction. The decay into three charged pions,
instead, conserves P but not G, hence it has to be an electromagnetic interaction,
which explains the narrow width of the η0 meson compared to the ρ0;

• a spin-1meson cannot decay toπ0 π0, since the final state would be antisymmetric
for exchange of the two particles, since the symmetry of the orbital wavefuction
is (−1)L = −1, thus violating Bose–Einstein symmetry;

• the decay of a vector meson with C = −1 into π0 π0 π0 violates C , so it cannot
be neither a strong nor an electromagnetic process. For ω0 and φ0, this decay
would also violate isospin. Strong decays into π+ π− π0 are instead possible for
ω0 and φ0, but not for ρ0 because of G-parity. In the latter case, the decay is
electromagnetic, hence it is suppressed compared to the more likely ρ0 → π+π−
decay.

Suggested Readings

For this kind of problems, a valid reference is the dedicated summary tables of the
PDG [9]. Besides the measured decays, the PDG tables report the results of searches
for decays that would violate some of the conservation laws expected from the SM.
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Problem 5.9 Explain which selection rules forbid the electromagnetic decays
π0 → 3γ and Σ∗− → Σ− γ .

Discussion

The internal symmetries of the Hamiltonian determine selection rules on the decay
of particles. The electromagnetic interaction conserves parity P , charge conjugation
C , but violates isospin I , although it preserves the third component, I3 (remember
the relation Q = I3 + Y/2). On the other hand, V -spin is conserved, since it is an
internal symmetry of the (d, s) quarks, which have the same electric charge.

Solution

Since π0 → 3γ would be an electromagnetic interaction, it should conserve C .
However, the neutral pion hasC = 1, while the final state hasC = (−1)3 = −1, thus
forbidding such a decay. The Σ∗− → Σ−γ decay would also be an electromagnetic
process, but it should violate V -spin, since Σ∗− belongs to the V = 3/2 quadruplet
(Δ−,Σ∗−, Ξ ∗−,Ω−), while Σ− belongs to the V = 1/2 doublet (Σ−, Ξ−).

Bando n. 18211/2016

Problem 5.10 The J/Ψ meson has a mass of 3096 MeV and a width of 100 keV.
Why is it so narrow?

Solution

The J/Ψ is a c c̄ bound state. Strong decays into charmed mesons like J/Ψ → D D̄
are kinematically forbidden. Strong decays into lighter mesons, like pions and kaons,
cannot be described, at leading order, by single-gluon exchange diagrams because
gluons are charged under SU (3)c. Two-gluon exchange is not possible either because
the J/Ψ hasC = (−1)L+S = −1, while a two-gluon state hasC = +1. Three-gluon
exchange is possible, but the decay width is suppressed by α3

s . Overall, the hadronic
width turns out to be a factor of about 10 larger than the electromagnetic width
responsible for J/Ψ → � �̄.

Discussion

The smallness of the J/Ψ decay width, which can be explained within the QCD
quark model as discussed above, is an instance of the so-called Okubo-Zweig-Iizuka
rule (OZI), which states that the decay width of a hadron whose Feynman diagram
consists of unconnected lines is suppressed. Here, a q q̄ pair produced from the par-
tonic sea is considered as unconnected.
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Suggested Readings

A good introduction to this topic can be found in Chap.4 of Ref. [8].

Bando n. 1N/R3/SUB/2005

Problem 5.11 Motivate why the φ meson decays into three pions only 15% of the
times, while the remaining decays consist mostly of φ → K K . For latter case, prove
that:

1. φ → K 0
S K 0

L is the only allowed decay into neutral kaons.
2. The width of φ decays into neutral kaons over the total width into kaons of any

charge is about 0.4.

Discussion

Since the SU (3) flavour symmetry is broken by the much larger mass of the strange
quark, see Table5.3, the I = 0 octet and singlet pseudo-vector states mix together,
yielding the physical ω0 and φ0 states. The latter is almost entirely a s s̄ bound state.

Solution

Thanks to its largemass, infact, larger than for theω0 andρ0, the decaysφ → K + K −
and φ → K 0 K̄ 0 are both kinematicall allowed, although the Q-value is very small
(about 30 MeV). The φ meson decay to a pair of neutral pions is forbidden by
Bose–Einstein symmetry, while the decay to charged pions is forbidden by G-parity
conservation, see Problem 5.8, hence the φ meson can only decay strongly to three
charged pions. TheOZI rule, however, suppresses this decay channel since it involves
unconnected quark lines. Overall, the decay to kaons dominates with a branching
ratio of about 84%.

Since the two kaons are in p-wave, the symmetry of the orbital wavefunction
is (−1)L = −1. The flavour part of the wavefunction needs to be antisymmetric as
required by the Bose–Einstein statistics. This leaves the only combination:

|K 0 K̄ 0〉 − |K̄ 0 K 0〉√
2

, (5.21)

which, in terms of theweak eigenstates, is a pure K 0
S K 0

L state. This can be also proved
by noticing that C P is an almost perfect symmetry of the strong and weak Hamil-
tonian, and since the φ meson has C P = (−1)S+1 = +1, see Eq. (5.16), the final
state needs to have also C P = +1. Since the orbital parity is −1, the only combina-
tion is K 0

S K 0
L , since C P|K 0

S〉 = +|K 0
S〉 and C P|K 0

L〉 = −|K 0
L〉. The antisymmetric

K + K − and K 0 K̄ 0 states have I = 0, as required by the isospin invariance of the
strong interaction. The ratio:
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α = Γ (φ → K 0
S K 0

L)

Γ (φ → K +K −) + Γ (φ → K 0
S K 0

L)
, (5.22)

would be 0.5 from isospin invariance. However, the decay amplitude in the centre-of-
mass frame must be a Lorentz-scalar and linear in the polarisation ε of the decaying
meson, which gives the only combination A ∝ ε · p∗, where p∗ is the momentum
in the centre-of-mass frame. Hence, the ratio α should be modified to:

α = |p∗
0|2

|p∗±|2 + |p∗
0|2

= 0.43, (5.23)

where |p∗
0| = 107 MeV and |p∗±| = 125 MeV. The Coulomb barrier effect, present

in the K + K − decay only, accounts for another 4%, thus giving α = 0.39 [10].

Suggested Readings

See the original paper [10] on the measurement of the φ properties and the more
extended discussion present in Chap.5 of Ref. [11].

Bando n. 13153/2009

Problem 5.12 TheΞ ∗− baryon can decay through the reaction (a)Ξ ∗− → K − Σ0,
followedby (b) K − → π− π0, (c)Σ0 → Λ0 γ , (d)π− → μ− ν̄μ, (e)μ− → e− νμ ν̄e,
(f) π0 → γ γ , and (g) Λ0 → p e− ν̄e. Classify the seven decays by interaction type
by knowing that the quark contents of the hadrons taking place to the reaction chain
are: Ξ ∗−(ssd), Σ0(sdu), Λ0(sdu), p(uud), K −(sū), π−(dū), π0(uū − dd̄).

Solution

The seven decay reactions can be classified by using the selection rules imposed
by the properties of invariance of the strong, electroweak (CC), and electromag-
netic (EM) interaction. The results are reported in Table5.2. In particular, the strong
interaction satisfies ΔS = ΔI = ΔI3 = 0, the electromagnetic interaction satisfies
ΔS = ΔI3 = 0, ΔI �= 0. Decays where ΔS �= 0 or ΔI3 �= 0 are mediated by the
charged-current interaction.

Suggested Readings

This topic is well discussed by almost all textbooks on particle physics, like
Refs. [8, 12].

Problem 5.13 Determine the relation between the cross sections π+ p → π+ p,
π− p → π0 n and π− p → π− p at the Δ peak.
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Table 5.2 Classification of
the Ξ∗− decay chain
proposed by the exercise

Decay ΔS ΔI ΔI3 Interaction

Ξ∗− → K − Σ0 0 0 0 Strong

K − → π− π0 −1 +3/2 −1/2 CC

π− → μ− ν̄μ 0 −1 −1 CC

μ− → e− νμ ν̄e 0 0 0 CC

π0 → γ γ 0 −1 0 EM

Σ0 → Λ0 γ 0 −1 0 EM

Λ0 → p e− ν̄e +1 +1/2 +1/2 CC

Discussion

The strong interactions are invariant under isospin transformations. Indeed, the
SU (3) flavour symmetry, which is at the basis of the observed pattern of hadrons,
contains isospin I as a sub-symmetry, together with U -spin and V -spin.

Solution

Isospin invariance implies that the transition amplitude for a pion-nucleon scattering
can be decomposed into a sum of amplitudes for different total isospin I . At the Δ

peak, only the Iπ N = 3/2 amplitude contributes. Using the Clebsch–Gordan coeffi-
cients, see e.g. Sect. 44 of Ref. [9], we can write the tensor-product of a IN = 1/2
and Iπ = 1 state as a linear sum of states of total isospin Iπ N = 1/2, 3/2, namely:

|π+ p〉 = |3
2
, +3

2
〉

|π− p〉 =
√
1

3
|3
2
, −1

2
〉 −
√
2

3
|1
2
, −1

2
〉

|π0 n〉 =
√
2

3
|3
2
, −1

2
〉 −
√
1

3
|1
2
, −1

2
〉

(5.24)

from which we can deduce the proportion:

σ(π+ p → π+ p) : σ(π− p → π0 n) : σ(π− p → π− p) =

= |A 3
2
|2 : |

√
2

3
A 3

2
|2 : |1

3
A 3

2
|2 = 1 : 2

9
: 1
9

= 9 : 2 : 1. (5.25)
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Suggested Readings

The first evidence for the Δ resonances in pion-hydrogen scattering was established
by E. Fermi and collaborators at the Chicago cyclotron in 1952. The reader is encour-
aged to read their original paper [13]. The pattern ofmeasured cross sections enforced
the interpretation of the resonance as a new I = 3/2 particle. The angular distribution
of the nucleon-pion allowed to determine its spin, see Problem 1.7.

Problem 5.14 Express the isospin wavefunction of the charged and neutral pions
in terms of the fundamental (u, d) and (ū, d̄) representation, using the fact that
(π−, π0, π+) form an isospin triplet.

Solution

Refering to Eq. (5.132) of Problem 5.36, we see that the isospin triplet states made
of a quark-antiquark pair are given by:

|πa〉 = σ a
i j√
2
|q̄i q j 〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|d̄ u〉+|ū d〉√
2

−i |d̄ u〉+i |ū d〉√
2

|ū u〉−|d̄ d〉√
2

(5.26)

The three states are however not eigenstates of I3. The latter can be obtained by a
simple rotation of the first two, giving the three pion states:

(|π−〉, |π0〉, |π+〉) =
(

|ū d〉, |ū u〉 − |d̄ d〉√
2

, |d̄ u〉
)

(5.27)

Notice the sign “−” in the π0 state vector, which differs from the more familiar
composition of two spin-1/2 particles into a S = 1 state. In this case, the two states
transform under the same representation of the SU (2) group.

Bando n. 18211/2016

Problem 5.15 Whay does the neutrinoless double-beta decay imply that the neutri-
nos are massive Majorana particles?

Discussion

A massive Majorana neutrino χ , assumed to be of left-handed chirality, is described
by a free Lagrangian:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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L M
free = iχ†σ̄ μ∂μχ + 1

2

[
m χT (iσ2)χ − m χ∗ T (iσ2)χ

∗] , (5.28)

where σ̄μ = (1,−σ ). The Lagrangian does not admit a conserved neutrino number,
since under an arbitrary U (1) transformation, the mass term is not invariant under
χ → eiφχ . When two left-handed Weil spinors χ1,2 are available, one can construct
a generic free-Lagrangian as

L M
free =

∑

i

iχ†
i σ̄ μ∂μχi + 1

2

[
χT

i Mi j (iσ2)χ j + h.c.
]
, (5.29)

where now M is 2 × 2 symmetric matrix. The special case M11 = M22 = 0, M12 ≡
m > 0 gives rise to a conserved lepton-number associated with the transformation
χ1 → eiφχ1 andχ2 → e−iφχ2. In terms of aDirac spinorχD ≡ χ1 + (iσ2)χ

∗
2 , where

now, (iσ2)χ
∗
2 transforms like a right-handed spinor, the Lagrangian takes the familiar

form:

L D
free = i χ̄D/∂χD − m χ̄DχD, (5.30)

which is the Lagrangian for a massive Dirac neutrino and admits a conserved lepton-
number associatedwith the transformationχD → eiφχD. The outstanding difference
between Eqs. (5.28) and (5.30) is that a new degree of freedom has been introduced
to have Dirac-type neutrinos.

If no right-handed neutrinos are introduced, the left-handed neutrinos aremassless
and lepton number is conserved. If the three right-handed neutrinos are introduced,
as demanded by the observation of neutrino oscillations, one should distinguish
between three cases depending on the value of the right-handed neutrinos mass term
1
2 M R

i j Ni N j :

• The six-by-six mass matrix M , analogous to the one in Eq. (5.29), is a symmetric
off-diagonal matrix, i.e. M R = 0: the neutrinos are Dirac particles in full analogy
with the charged leptons and quarks; lepton number is conserved.

• The elements of the matrix M R are much larger than the Yukawa mass term: there
are three Majorana-type, light neutrinos, mostly made of the weakly interacting
νi , and three Majorana-type, heavy and approximately decoupled right-handed
neutrinos. Lepton number is maximally violated.

• Any other combination between these two extreme cases gives rise to up to six
distinct eigenvalues of the full neutrino matrix, with lepton number violation.

Since the second option has the virtue of explaining the lightness of the neutrinos
by assuming a large value for M R rather by postulating an unnaturally small value
for the Yukawa coupling, it is also the more frequently considered. See Ref. [14] for
more details.
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Solution

The SM Lagrangian with Dirac-type neutrinos admits a conserved lepton number.
The 0νββ decay of unstable nuclei would violate lepton number by two units, hence
this decay should occur. If instead the neutrinos are of Majorana type, there is no
conserved lepton number and this decay is allowed. Since a Majorana neutrino with
mν = 0 would still result in a conserved lepton number, we should expect the ampli-
tude to be proportional tomν . Indeed, the 0νββ amplitudemust contain the propagator
of a Majorana neutrino. The latter is given by:

∫
d4x eipx

〈
χ(x) χ(0)

〉 = − mν σ2

p2 − m2
ν

. (5.31)

Since the weak eigenstates do not coincide with the mass eigenstates, as shown by
neutrino oscillations, themass term in Eq. (5.31) should be replaced by a combination
of masses of the three neutrino eigenstates. In terms of the PMNS matrix, we have:

mν =
∑

i

U 2
ei mi and Γ0νββ = |mν |2|M |2Φ, (5.32)

where Φ is a known phase space factor and M is the nuclear matrix element.

Suggested Readings

Ref. [14] provides a concise overview on this subject. See Ref. [15] for a more formal
treatment of Majorana particles.

Bando n. 18211/2016

Problem 5.16 Is the helicity of a free neutrino produced in aweak decay conserved?

Solution

As shown in Problem 1.6, spinors of a given chirality have a definite helicity in the
limit β → 1. If the particle is massive and is produced with a given chirality, as is it
the case for the neutrinos, the spinor will contain, in general, a mixture of opposite
helicity states. Assuming mν = O(eV), the boost factor for neutrinos produced by
standard reactions is so large that all (anti)neutrinos can be assumed to have a constant
helicity h = −1 (+1).

Problem 5.17 The ρ+ and K + mesons can both decay into π+π0. What is the total
isospin of the π+π0 state for the two decays?

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Solution

The composition of two isospin-1 particles can give I = 0, 1, 2. However, the state
I = 0 cannot contribute since I3 = +1 for a π+π0 state. For the ρ decay, conserva-
tion of isospin by the strong interaction implies I = 1. The K + → π+ π0 is instead
an electroweak transition, sinceΔS = 1, which does not conserve isospin. However,
the final state is made of two bosons, hence its wave function must be symmetric
under exchange of the two particle indices. Since the symmetry of the spatial compo-
nent of the wavefunction is (−1)L = +1, the isospin component has to be symmetric
under π+ ↔ π0 exchange, hence I = 2.

Discussion

The I = 3/2 transition responsible for the K + → π+π0 decay is suppressed,
explaining the smallness of the K + → π+ π0 decay probability compared to e.g.
K 0

S → (ππ)I=0.

Suggested Readings

For more details on the ΔI = 1/2 rule for charged-current interactions, the reader
is addressed to Chap.7 of Ref. [11].

Bando n. 13153/2009

Problem 5.18 The Δ0 and Λ0 particles decay into π− p with a mean lifetime of
about 10−23 s and 10−10 s, respectively. Motivate this large difference.

Solution

The Δ resonance is a non-strange baryon which decays strongly to π− p. The Λ0

baryon has strangeness S = −1. Its decay is mediated by the electroweak interac-
tion, which explains the smaller transition probability, and, hence, the much larger
lifetime. While the Δ is usually referred to as a resonance rather than a particle, the
Λ0 is a so-called V-particle because its lifetime is long enough to allow its produc-
tion and decay vertex, made of two opposite-sign tracks in the form of a “V”, to be
experimentally separated already at moderate energies since cτ ≈ 7.9 cm.

Suggested Readings

Check the PDG reviews [9] for the decay modes and properties of the Δ and Λ

baryons.
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Problem 5.19 Prove that, within the quark parton model, the requirement that the
difference between the number of quarks and antiquarks bound in a hadron should
be a multiple of three implies that hadrons must have an integer electric charge, and
vice versa.

Solution

Let’s denote themultiplicity ofu,d, ū, and d̄ quarks bynu ,nd ,nū , andnd̄ , respectively.
Let nq = nu + nd and nq̄ = nū + nd̄ be the quark and antiquark multiplicities. Then,
the hadron charge Q is given by:

Q = 2

3
nu − 1

3
nd − 2

3
nū + 1

3
nd̄ ,

3Q = (2nu − nd) − (2nū − nd̄) = 2(nq − nq̄) + 3(nd̄ − nd). (5.33)

Since (nd̄ − nd) ∈ Z, then Q ∈ Z implies that (nq − nq̄) is also a multiple of three.
Vice versa, if (nq − nq̄) is a multiple of three, then Q ∈ Z. Indeed, all hadrons
observed so far are composed of quarks and antiquarks in numbers such that
(nq − nq̄) is a multiple of three: mesons (q q̄), baryons (q q q), anti-baryons (q̄ q̄ q̄),
tetraquarks (q q̄ q q̄), and pentaquarks (q q q q q̄).

Discussion

A number of putative tetraquark states (X, Z , Y, . . .) manifesting in the two-body
invariant mass of meson pairs, of which one is a heavy meson, has been reported by
several experiments in recent years (Belle, BESIII, CDF, D0, LHCb). The observa-
tion of pentaquarks has been established in 2015 by the LHCb Collaboration [16]:
an amplitude analysis of the decay Λ0

b → J/Ψ K − p has been performed, finding
a structure in the J/Ψ p kinematics consistent with an intermediate u u d c c̄ reso-
nance: a charmonium-pentaquark.

Suggested Readings

For the experimental evidence of tetraquark-like states, see e.g. the D0 evidence for
a particle X (5586) decaying to B0

s π±, published in Ref. [17]. References to other
searches can be found in the same article. The observations of an exotic structure
in the J/ψ p channel, consistent with two pentaquark resonances, is documented in
Ref. [16]. The description of hadronic properties in terms of the quark model is well
summarised in Sect. 15 of Ref. [9].

Problem 5.20 Within the quark parton model, each quark is described by a parton
density function (PDF) q such that q(x) dx gives the amount of quarks of type q
sharing a fraction x ′ ∈ [x, x + dx] of the parent hadron mass. Assume the proton
to be made up of six different quarks: u, ū, d, d̄, s, s̄. Make use the proton quantum
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numbers (a) electric charge Q p = +1, (b) baryon number Bp = +1, (c) strangeness
Sp = 0, to predict the values of:

∫ 1

0
uV (x ′) dx ′,

∫ 1

0
dV (x ′) dx ′,

∫ 1

0
sV (x ′) dx ′, (5.34)

where qV ≡ q − q̄ .

Solution

From the constraints on the electric charge, baryon number, and strangeness, we get
the following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

Q p = ∫ 1
0 dx ′ [ 2

3u(x ′) − 1
3d(x ′) − 1

3 s(x ′) − 2
3 ū(x ′) + 1

3 d̄(x ′) + 2
3 s̄(x ′)

] = 1

Bp = ∫ 1
0 dx ′ [ 1

3u(x ′) + 1
3d(x ′) + 1

3 s(x ′) − 1
3 ū(x ′) − 1

3 d̄(x ′) − 1
3 s̄(x ′)

] = 1

Sp = ∫ 1
0 dx ′ [−s(x ′) + s̄(x ′)

] = 0

from which we can derive the relations:
⎧
⎪⎪⎨

⎪⎪⎩

∫ 1
0

[
u(x ′) − ū(x ′)

]
dx ′ = ∫ 1

0 uV (x ′) dx ′ = 2
∫ 1
0

[
d(x ′) − d̄(x ′)

]
dx ′ = ∫ 1

0 dV (x ′) dx ′ = 1
∫ 1
0

[
s(x ′) − s̄(x ′)

]
dx ′ = ∫ 1

0 sV (x ′) dx ′ = 0

(5.35)

Notice that this result agrees with the expectation from the flavour SU (3) model of
hadrons, which assigns the u u d flavour content to the proton.

Discussion

Relations between the moments of the PDF for different types of partons, like
Eq. (5.35), are known as sum rules, and prove useful in constraining parton-related
observables that cannot be directedmeasured.Aparadigmatic example is provided by
the average gluon momentum in hadrons,

∫
dx x g(x) ≈ 0.5, which can be inferred

from leptonDIS data even in the absence of tree-level gluon interactionswith leptons.

Suggested Readings

For a broader overview on sum rules in QCD, the reader is addressed to dedicated
monographs like Refs. [18, 19].
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5.2 Electroweak and Strong Interactions

The standard model of electroweak and strong interactions (SM) is a relativistic
quantum field theory invariant under the gauge group:

GSM = SU (3)C × SU (2)L × U (1)Y , (5.36)

where SU (3)C is the symmetry group associated with the strong force (colour), and
SU (2)L × U (1)Y is the symmetry related to the electroweak interactions (isospin
and hypercharge).

In a gauge theory, each generator of the group is associated with a spin-1 gauge
boson, which can be seen as the force mediator between the matter particles of
spin-1/2. In the SM, there are 8 + 3 + 1 such gauge bosons. Following the standard
notation, see e.g. Ref. [20], we denote the gauge fields associated to the three sub-
groups of Eq. (5.37) as Ga

μ, a = 1, . . . , 8, W a
μ , a = 1, 2, 3 and Bμ, respectively. The

Lagrangian density of the gauge fields can be expressed in a compact form in terms
of the field strengths:

Ga
μν = ∂μGa

ν − ∂νGa
μ + gs f abc Gb

μ Gc
ν

W a
μν = ∂μW a

ν − ∂νW a
μ + g2 εabc W b

μ W c
ν

Bμν = ∂μ Bν − ∂ν Bμ,

(5.37)

where f abc and εabc are the structure constants of SU (3)C and SU (2)L , and two of
the three adimensional coupling constants of the theory (gs , g2) have been introduced.
The third coupling (g1) is associated with the abelian sub-groupU (1)Y , and therefore
it enters only through the interaction with matter fields.

In addition to the gauge bosons, the spectrum of the theory accommodates all
the elementary matter particles observed in experiments: quarks and leptons. These
come in three replicas, or families. One family is composed by fifteen independent
Weil spinors:

• up and down left–handed quarks (Q) of three different colors;
• up and down right–handed quarks (u R , dR) of three different colors;
• up and down left–handed leptons (L) ;
• down right–handed lepton (eR).

They can be conveniently arranged into a multiplet of fields:

{Q(3, 2)1/3, L(1, 2)−1, u R(3, 1)4/3, dR(3, 1)−2/3, eR(1, 1)−2}, (5.38)

where the charges under GSM have been explicitated: the first (second) number in
parenthesis indicates under which representation of the color (isospin) group the
fields transform, while the subscript corresponds to the hypercharge. One should
possibly add a right-handed neutrino NR(1, 1)0 to accommodate massive neutrinos.
The right–handed neutrino is however sterile because it does not couple with the
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gauge fields (it is a singlet under transformations of the group in Eq. (5.36)). Notice
that all fields are charged under U (1)Y , but only left-handed particles are charged
under SU (2)L and only the quarks are charged under SU (3)C . The representation in
the multiplet basis of the group in Eq. (5.36) is therefore reducible to blocks.

The gauge symmetry dictates the structure of theLagrangian: to achieve invariance
under an arbitrary local transformation of Eq. (5.36), only a few combinations of the
fields are allowed. A Lagrangian density of the gauge and of the matter fields of one
family, renormalizable and invariant under an arbitrary local transformation of (5.37),
is provided by:

LSM = − 1
4Ga

μνGμν
a − 1

4W a
μνW μν

a − 1
4 Bμν Bμν+

i L̄ /D L + i ēR /D eR + i Q̄ /D Q + i ū R /D u R + i d̄R /D dR,
(5.39)

with the covariant derivative Dμ defined as

Dμψ ≡
(

∂μ − i gs T · Gμ − i g2
σ · Wμ

2
− i g1

Y

2
Bμ

)
ψ. (5.40)

The matrices T a and σ a are a particular representation of the generators of SU (3)C

and SU (2)L , respectively. In the basis where the left-handed neutrino and electron
are the first and second element of the isospin doublet, σ a are chosen to be the three
Pauli matrices. The λa matrices are taken to be the eight Gell-Mann matrices. The
Y matrices are diagonal in the multiplet space. The first row of Eq. (5.39) describes
the dynamic of the gauge fields, with the kinetic, triple and quartic self-interaction
terms (the latter two are present only for the non-abelian groups); the second and
third rows contain the kinetic lagrangian of the fermions plus the interactions with
the gauge fields.

In the attempt to write all possible gauge-invariant and renormalizable combina-
tion of matter and gauge fields, mass terms are excluded from the right-hand side
of (5.39) for both the vector bosons and the fermions, so that the spectrum of the
theory would consist of only massless particles. However, the addition of a new
SU (2)L -doublet of complex scalar fields, called the Higgs doublet, with the cor-
rect quantum numbers allows for additional gauge-invariant terms. Indeed, with the
inclusion of the Higgs doublet:

Φ =
(

φ+
φ0

)
=
(

φ1 + iφ2

φ3 + iφ4

)
, (5.41)

with YΦ = 1, three more terms pop up:

LY = −λe L̄ Φ eR − λu Q̄ iσ2Φ
∗ u R − λd Q̄ Φ dR + h.c. (5.42)

With a suitable unitary transformation in flavour space, the λe matrix can be made
diagonal. Conversely, by three additional rotations of the Q, u R , and dR fields, only
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one between λu and λd can be diagonalised. The other will remain non-diagonal,
so that an additional rotation is needed to go into the canonical mass basis after
EWSB, see Sect. 5.4. The rotation will mix the SU (2)L quark doublets of the three
generations, thus changing the charged-current Lagrangian into:

LCC = g√
2

Vi j ūi γμ

(1 − γ5)

2
d j W + μ + h.c. (5.43)

where the unitary matrix Vi j is called Cabibbo-Kobayashi-Maskawa matrix (CKM)
and will be discussed in more detail in Sect. 5.3.

Problems

Bando n. 13707/2010

Problem 5.21 The neutron, muon, and tau decay via theweak interactionwithmean
lifetimes of 886 s, 2.2 µs, and 0.29 ps, respectively: how can you explain the huge
difference between their lifetimes?

Discussion

The three decays are mediated by the charged-current interaction, which can be
described by the effective Fermi lagrangian of Eq. (2.82). Hence, the decay widths
must be proportional to G2

F . However, the width must have the dimensions of an
energy, hence Γ must be proportional to another mass scale Δ to the fifth power.
The hierarchy between the decay times reflects the hierarchy in the mass scale Δ.

Solution

For the neutron, one can use Sargent’s rule, see Eq. (1.214) with proper modifications
to account for the finite electron mass, which is comparable to the neutron-proton
mass difference. Using the effective Fermi Lagrangian of Eq. (2.82), where the ratio
between V and A hadron currents is parametrised by a parameter α of O(1), such
that α = 1 gives a pure V − A interaction, the neutron width can be calculated at
LO:

Γn = G2
F Q5

60π3
cos2 θC(1 + 3α2)Φ, (5.44)

where Φ = 0.47 is a numerical factor (that would be unity if the electron mass were
neglected relative to Q) and θC is the Cabibbo angle. Hence, the neutron width is
proportional to Q5, with Q = mn − m p = 1.29MeV. For the muon decay, the width
can be computed exactly using the FermiLagrangian,which provides thewell-known
result:

Γμ = G2
F m5

μ

192π3
. (5.45)

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_2
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This time, the width is proportional to m5
μ, with mμ = 106 MeV. For the tau decay,

we can use the results from Problem 5.28, giving:

Γτ ≈ 5Γ (τ → e νe ντ ) = 5G2
F m5

τ

192π3
. (5.46)

Modulo phase-space factors, the expression are pretty similar. If we want to relate all
widths to the purely leptonicwidth of Eq. (5.45), we see that the numerical coefficient
in Eq. (5.44) is about 6. Hence:

τn : τμ : ττ = 1 : Γn

Γμ

: Γn

Γτ

≈ 1 : 6
(

Q

mμ

)5

: 6
5

(
Q

mμ

)5

=
1 : 1.7 × 10−9 : 2.6 × 10−16, (5.47)

in fair agreement with the experimental result: 1 : 2.5 × 10−9 : 3.3 × 10−16.

Suggested Readings

The calculation of the muon decay with can be found in several textbooks on par-
ticle physics, see e.g. Ref. [8, 12]. An instructive dissertation about the history of
the charged-current interaction can be found in Chap.6 of Ref. [11]. The reader is
addressed to Ref. [14] for more details on the neutron decay.

Bando n. 1N/R3/SUB/2005

Problem 5.22 Weak interactions are responsible for the decay of muons (τ ∼
10−6 s), of B mesons (τ ∼ 10−12 s), and of neutrons (τ ∼ 103 s). Which are the
dominant factors responsible for the large differences in lifetime?

Solution

The difference between the neutron and muon decay widths is discussed in Prob-
lem 5.21. The B mesons are fairly more long-lived particles compared to what one
would expect with respect to charmed mesons. For example, from a pure Q5 scaling,
onewould expect the B+ lifetime to be of order 10−15 s, while it is found to be roughly
three orders of magnitude larger. Consider for example the decay B+ → D0 e+ νe

and its light-flavour counterpart π+ → π0 e+ νe. The former has a branching ratio
of 10−1, while the latter occurs with a branching ratio of about 10−8. The naive ratio
between the two decay widths would then be:

Γ (B+ → D0 e+ νe)

Γ (π+ → π0 e+ νe)
≈
(

m B+ − m D0

mπ+ − mπ0

)5

≈ 5 × 1014, (5.48)
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while the observed ratio is:

Γ (B+ → D0 e+ νe)

Γ (π+ → π0 e+ νe)
= c τπ+ · 10−1

c τB+ · 10−8
= 107 · 7.8 m

5 × 10−4 m
≈ 2 × 1011. (5.49)

The difference is due to the magnitude of the CKM matrix element |Vcb| ≈ 0.04,
thus giving a factor |Vcb|2 ∼ 10−3 smaller width for B decays compared to the
CKM-favoured d → u transition.

Suggested Readings

An instructive introduction to the physics of B hadrons can be found in Chap.11 of
Ref. [11].

Problem 5.23 Provide a quantitative explanation of why the lifetime of charged
pions (τπ+ = 2.6 × 108 s) is much larger than the lifetime of neutral pions (τπ0 =
8.5 × 10−17 s). How would you measure the latter?

Solution

The decay of the charged pion occurs through the charged-current interaction, which
involves the production of an off-shell W boson. The amplitude is therefore sup-
pressed by the small Fermi constant G F = 1.17 × 10−5 GeV−2. More specifically,
the Fermi Lagrangian of Eq. (2.82), provides a decay width [21]

Γ (π+ → μ+νμ) = cos2 θC
G2

F

8π
f 2π m2

μ mπ

(

1 − m2
μ

m2
π

)2

= 2.5 × 10−8 eV, (5.50)

where fπ ≈ 130 MeV is the pion decay constant defined by
〈
0|Jμ

A |π(p)
〉 = i pμ fπ .

From this value, one gets τπ+ = 25 ns, where we have used Eq. (1.8) to convert the
result in SI.

The π0 decay is instead an electromagnetic process which is not suppressed by
the electroweak mass scale. The amplitude for this decay can be related to the three-
point axial-vector-vector amplitude, which should be zero because of conservation
of the vector and axial current in QCD (the symmetry would be exact in the limit of
massless quarks). The fact that this decay occurs is a manifestation of the so-called
chiral anomaly, i.e. the breaking of a classical symmetry by quantum effects, in this
case by quantum fluctuations of the quark fields in the presence of a gauge field.
The relation between the conservation of the axial current and the decay amplitude
π0 → γ γ can be traced to the fact that the pion fields are related to the divergence
of the axial current by the relation:

∂μ J a μ

A = fπ m2
π φa

π (x), with J a μ

A (x) = ψ̄i (x)
σ a

i j

2
γ μγ 5ψ j (x). (5.51)

http://dx.doi.org/10.1007/978-3-319-70494-4_2
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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The chiral anomaly provides a leading-order contribution to the decay width that can
be parametrised via an effective Lagrangian

Lchiral = α

8π

1

fπ
εμνρσ Fμν Fρσ φπ0 . (5.52)

Making the quark content of the pion explicit, the decay width becomes [22]:

Γ (π0 → γ γ ) = N 2
C

(
e2u − e2d

)2 α2 m3
π0

64π3 f 2π
= 7.76 eV, (5.53)

where NC is the number of coulors and eu,d are the electric charges of the up- and
down-type quarks, corresponding to τπ0 = 0.8 × 10−16 s.

There have been four different experimental methods which have been utilised to
measure the π0 lifetime. The first method consists in a direct measurement of the size
of the π0 decay region by relating the decay length d to the π0 lifetime by the relation
d = (|p|/mπ0) cτπ0 , assuming the pion momentum to be known by other means. The
early measurements of this kind studied the production and decay of neutral pions in
emulsions, which are limited by the granularity of the medium. A better sensitivity
is provided by taking into account the Dalitz decay π0 → e+ e− γ (BR ≈ 1.2%),
where the π0 can be produced by either nuclear reactions (stars) or by the decay of
stopped kaons via K + → π+ π0. In order to increase the mean flight distance, the
neutral pions need to be produced at large boosts. The latest and most sensitive of
such measurements has been carried out by the NA-30 experiment at CERN [23].
In this experiment, neutral pions were produced from the interaction of 450 GeV
protons against a target consisting of two tungsten folis of variable distance. The
produced π0 had an average momentum of 235 GeV, corresponding to an average
flight distance d ≈ 50 µm. By increasing the distance between the two foils in a
range from 5 to 250 µm, the rate of e+e− conversion was changed because of the
larger fraction of π0 decay upstream of the second foil: the lifetime could be then
measured from the rate of photon conversions as a function of the foil distance.

The second experimental technique makes use of the Primakoff effect, i.e. the
photo-production ofπ0’s in the electromagnetic field of a heavy nucleus, see Fig. 5.1.
The cross section for the reaction γ A → π0 X , with π0 → γ γ and A is a nucleus
of atomic number Z , can be related to the π0 width, since

σ(γ A → π0 X) ∝ Z2 Γ (π0 → γ γ ) · BR(π0 → γ γ ), (5.54)

with BR(π0 → γ γ ) = 0.988 [9]. Indeed, an explicit calculation from Eq. (5.51)
yields a cross section:

σ ≈ Z2α3

3π2 f 2π

(

1 − m2
π

E2
γ

) 3
2

, (5.55)
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Fig. 5.1 Leading-order
diagram contributing to the
reaction γ A → π0 X ,
where A is a nucleus with
atomic number Z

γ
π0

γ

γ

A,Z

γ∗

valid in the limit Eγ � mπ , see e.g. Problem 84 of Ref. [2], to be compared with
Eq. (5.53). This method was pioneered in 1965 by Bellettini et al. at the Frascati
Laboratories and later exploited by several other experiments. See Ref [22] for a
comprehensive review on this topic.

The thirdmethod exploited in experiments is based onmeasuring the cross section
for e+ e− → e+ e− π0, where the π0 is produced via photon-fusion, and which can
be again related to Γ (π0 → γ γ ).

The fourth method is based on a measurement of the branching ratio of the radia-
tive decay π+ → e+ νe γ , as carried out in the PIBETA experiment, which can be
related to π0 → γ γ by isospin invariance.

Suggested Readings

For a comprehensive review on this subject, the reader is addressed to Ref. [22].

Bando n. 13153/2009

Problem 5.24 Explain why the decay of the charged pion into an electron is dis-
favoured compared to the decay into a charged muon. Estimate the ratio between the
two decay widths.

Solution

The leptonic decay of a charged pseudo-scalar meson can be described using the
Fermi model of the charged-current interaction, giving an amplitude:

A f i = G F√
2

〈
0|JA α(0)|π+〉 〈μ+ νμ|Jα †

V (0) − Jα †
A (0)|0〉, (5.56)

where Jα
V,A are the vector and axial currents. The unknown hadronic matrix ele-

ment is parametrised by the meson decay constant fπ . The leptonic matrix element
selects leptons of left-handed chirality. Since the pion has J = 0, the two leptons
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must have the same helicity in the centre-of-mass frame. However, left-handed lep-
tons with |p∗| > 0 are polarised, see Problem 1.6, and have a unique helicity in the
limit β∗ → 1, which would be opposite for particle and anti-particle. This decay is
therefore helicity-suppressed. This is reflected by the fact that the decay amplitude
is proportional to mμ, as one can readily prove by noticing that:

A f i ∝ ūν /p(1 − γ5)vμ = −mμ ūν(1 + γ5)vμ, (5.57)

where uν and vμ are the Dirac spinors for particles and antiparticles, whichmust obey
the Dirac equations /pν

uν = 0 and (/pμ
+ mμ)vμ = 0, respectively. In Eq. (5.57), we

have used the anti-commutation relation {γμ, γ5} = 0. Since the amplitude is between
states of the same chirality, it must also vanish in the limit β∗ → 0. Indeed, the low-
energy matrix element expansion of operators like ψ̄γμψ and ψ̄γμγ5ψ between two
spin-1/2 particles are:

ū1γμu2 → (χ
†
1χ2, 0)

ū1γμγ5u2 → (0, χ†
1σχ2)

(5.58)

see e.g. Chap. 6 of Ref. [11]. For a state with J = 0, the first of these terms is zero
since χ1 and χ2 must be orthogonal. The second must be contracted with p∗, which
is the only available vector. Hence, we should expect |A |2 to be proportional to
the centre-of-mass momentum squared, |p∗|2 ∝ m2

π − m2
μ. Finally, the decay width

must be proportional to the two-body phase-space, which is again proportional to
|p∗|2, see Eq. (1.189). The decay width can be easily computed by using the standard
covariant formalism, see e.g. Ref. [21], yielding Eq. (5.50). The ratio between the
decay width to muons and electrons is thus given by:

Γ (π+ → e+ νe)

Γ (π+ → μ+ νμ)
= m2

e (m2
π − m2

e)
2

m2
μ (m2

π − m2
μ)2

= 1.28. × 10−4. (5.59)

Once a radiative correction of about −3.9% is included [24], the theoretical result
agrees with the observed ratio of 1.23 × 10−4 [9].

Suggested Readings

See Ref. [21] for a formal treatment of the charged pion decay. This topic is usually
well discussed by classical textbooks like e.g. Ref. [8].

Bando n. 1N/R3/SUB/2005

Problem 5.25 What is the LO expectation for the ratio R = σhad/σμμ for an e+e−
machine operating at a centre-of-mass energy of 6 GeV? What is the the LO expec-
tation for the BR of the W boson into a lepton-neutrino pair?

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Discussion

In the history of QCD, the experimental observable R = σhad/σμμ had a key role in
providing direct evidence in favour of the quark model with NC = 3 and fractional
electric charge.

Solution

At LO, the production of a μ+μ− pair as well as of quark-antiquark pair at
√

s =
6 GeV proceeds through a time-like photon in the s-channel. The cross section for
e+ e− → q q̄ must be proportional to the number of coulors NC and to the charge
squared of the quark, eq . If n f quark flavours are kinematically accessible, i.e. mq ≤√

s/2, and neglecting the mass of the produced quarks compared to their energy, so
that the phase-space volume of Eq. (1.189) is the same for muons and for any of the
quarks, then the LO ratio R is given by:

RLO = NC

∑

q=u,d,s,c

e2q = NC

[

2 ·
(
2

3

)2

+ 2 ·
(

−1

3

)2
]

= 10

9
NC ≈ 3.3 (5.60)

Given the experimental value for the quark masses, see Table5.3, the assumptions
above are valid at

√
s = 6 GeV. The experimental outcome is R ≈ 4 [9], which is

in fair agreement with the LO estimate. The NLO corrections to the ratio R gives a
K factor [19]:

RNLO = RLO

(
1 + αs(s)

π

)
≈ 3.5, (5.61)

which agrees even better with the experimental value. In obtaining the numerical
value in Eq. (5.61), we have used the value αs(s = (6 GeV)2) ≈ 0.2, see e.g. Fig. 9.2
of Ref. [9].

Table 5.3 Mass and charge
of the six quarks. From
Ref. [18]

Flavour Mass (MeV) Charge (e)

d 3 ÷ 9 −1/3

u 1 ÷ 5 +2/3

s 75 ÷ 170 −1/3

c 1150 ÷ 1350 +2/3

b 4000 ÷ 4400 −1/3

t 1.74 × 105 +2/3

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

A formal treatment of R in perturbative QCD can be found in dedicated textbooks,
like Chap.3 of Ref. [19].

Bando n. 1N/R3/SUB/2005

Problem 5.26 What is the the LO expectation for the BR of the W boson into a
lepton-neutrino pair?

Discussion

The coupling of the W boson to the leptons, here collected into three SU (2)L mul-
tiplets, is given by

L
lep
CC = g√

2
L̄ γ μ T − PL L W +

μ + h.c. =
∑

�=e,μ,τ

g

2
√
2
�̄γ μ(1 − γ5)ν� W +

μ + h.c.,

(5.62)

where T ± are the ladder operators of SU (2)L and PL is the left-handed helicity
projector. For the quark doublets Q, again seen as a multiplet in quark-flavour space,
the interaction is similar to Eq. (5.62) modulo the insertion of the CKM matrix V :

L had
CC = g√

2
Q̄ V γ μ T − PL Q W +

μ + h.c. =

=
NC∑

a,b=1

∑

i=u,c,t

∑

j=d,s,b

g

2
√
2
δabūa

i Vi j γ μ (1 − γ5) db
j W +

μ + h.c. (5.63)

where δab makes evident that the charged-current interactions are diagonal in colour
space.

Solution

With the only exception of theCKMmatrix, the charged-current coupling of fermions
is universal. If we denote the LO width for the two-body decay by Γ (W → � ν), the
leptonic and hadronic widths are given by:

Γlep =
∑

�=e,μ,τ

Γ (W → � ν) = 3Γ (W → � ν)

Γhad = NC

∑

i=u,c

∑

j=d,s,b

|Vi j |2Γ (W → � ν) = 2 NC Γ (W → � ν)
(5.64)
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Differences in phase-space are here neglected since they give rise to small corrections.
In the second of Eq. (5.64), we have exploited the fact that the decay into final states
with topquarks is kinematically forbidden, seeTable5.3, andmadeuseof the unitarity
of the CKM matrix, V −1 = V †. Hence, LO prediction is:

ΓW = Γlep + Γhad = (2NC + 3)Γ (W → � ν) = 9Γ (W → � ν)

BR(W → � ν�) = Γlep

Γlep + Γhad
= 3

2NC + 3
= 1

3
(5.65)

Hence, the branching ratio to any lepton is roughly 10%.

Problem 5.27 Determine the width of the W boson at LO.

Solution

We can use the charged-current Lagrangian of Eqs. (5.62) and (5.63) to derive the
amplitude M for the process W + → �+ ν, where � and ν denote the up and down
states of a generic SU (2)L doublet. Using Eq. (1.186), the decay width Γ (W + →
�+ ν) is given by

Γ (W + → �+ ν) = 1

2mW

∫ ∑ |M |2
2J + 1

dΦ2, (5.66)

where the sum runs over the polarisations and spin states of the fermions. The ampli-
tude squared can be readily obtained by using the Feynman rules corresponding to
the Lagrangian of Eq. (5.62), giving:

1

3

∑
|M |2 =

(
g

2
√
2

)2
(
1

3

∑

r

εμ(r)ε∗
ν (r)

)

Tr
[
/�γμ(1 − γ5)/νγν(1 − γ5)

] =

=
(

g

2
√
2

)2 1

3

(
−gμν + qμqν

m2
W

)
2 Tr

[
/�γμ/νγν(1 − γ5)

] =

=
(

g

2
√
2

)2 8

3

[(
−gμν + qμqν

m2
W

)
(�μνν + νμ�ν − (�ν)gμν)

]
(5.67)

In the last equality, we have used the fact that PL/� = /�PR and P2
L = 1, and carried

out the sum over the polarisation by using the completion relation. The trace contain-
ing γ5 gives a vanishing contribution because it is totally antisymmetric, while the
polarisation tensor is symmetric. By using the fact that �ν = m2

W /2, the contraction
between the two tensors can be done trivially giving a factor of m2

W . Hence:

Γ (W + → �+ ν) = 1

2mW

g2m2
W

3

∫
dΩ∗

32π2
= g2m2

W

48π
= G F m3

W

6
√
2π

, (5.68)

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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where we have used the relation

G F√
2

= g2

8m2
W

(5.69)

to conveniently express the result in terms of the Fermi constant. Finally, we can use
Eq. (5.65) and get the result:

ΓW = 9Γ (W + → �+ ν) = 3G F m3
W

2
√
2π

= 2.05 GeV, (5.70)

to be compared with the measured value of ΓW = (2.085 ± 0.042) GeV [9].

Problem 5.28 Show that the branching ratios of the decay of τ leptons into muons,
electrons, and hadrons are in the approximate ratio 1 : 1 : 3. What fraction of the
hadronic decays do you expect to contain at least one kaon?

Solution

The ratio between the leptonic and hadronicwidths of the τ lepton can be predicted by
using the results for the decays of the on-shell W boson, discussed in Problem 5.26.
Indeed, the electroweak τ decay can be treated as the two-stage reaction τ → W ∗ ντ ,
W ∗ → anything. However, the much smaller centre-of-mass energy mτ allows only
two lepton flavours to contribute to the leptonic width and only the combination u d̄
and u s̄ to the hadronic width, so that:

Γlep

Γhad
≈ 2

NC (|Vud |2 + |Vus |2) = 2

3
, (5.71)

where we have used the fact that |Vud |2 ≈ 1 − |Vus |2 = cos2 θC. Hence, we get the
relation:

Γ (τ → e νe ντ ) : Γ (τ → μνμ ντ ) : Γ (τ → hadrons ντ ) = 1 : 1 : 3. (5.72)

This expectation is in fair agreement with the observed result BR(τ → � ν� ντ ) ≈
17%. QCD corrections decrease the ratio in Eq. (5.71) by roughly 20%. From
Eq. (5.71), it is also evident that the decay width to strange mesons is Cabibbo-
suppressed, with a typical ratio:

Γ (τ → K ντ )

Γ (τ → π ντ )
≈ sin2 θC

cos2 θC
=
(
0.22

0.97

)2

≈ 5%. (5.73)

Only one hadronic decay out of twenty is expected to contain a kaon.
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Suggested Readings

For a modern review of τ lepton physics, the reader is addressed to Ref. [25].

Bando n. 18211/2016

Problem 5.29 Indicate at least one production process of the top quark at Tevatron
and at LHC. How was it possible to determine the top quark mass at LEP?

Solution

Themost abundant productionmechanismof top quarks at hadron colliders is through
the strong interaction q q̄, g g → t t̄ . Production of a single top quark via t-, tW -,
and s-channel is suppressed since it envolves an electroweak coupling and depends
on the b quark PDF (for t- and tW -channel).

The maximum LEP-2 energy of 209 GeV (see Problem 3.5) did not allow to
produce t t̄ pairs from s-channel γ ∗/Z0 production. The single-top channel e+ e− →
W − t b̄ is kinematically allowed, but its cross section is small and no such events were
observed. The sensitivity to mt came from electroweak precision observables [26]
that could be measured to per mill accuracy [27], in particular the corrections to the
ρ-parameter and to the Z0 → b b̄ hadronic width:

ρ = m2
W

m2
Z cos2 θW

= 1 + Δρ = 1 + 3G F m2
t

8π2
√
2

+ · · ·

Γb = Γd

(
1 − 20

13
Δρ + · · ·

) (5.74)

which are almost 1% corrections which could be measured at LEP.

Suggested Readings

SeeRef. [28] for a comprehensive overviewon the electroweakprecision tests (EWP).

Bando n. 18211/2016

Problem 5.30 Estimate the minimum electron beam energy needed to study a sys-
tem of linear dimension d = 1 fm.

Solution

By using the uncertainty principle, we can estimate the momentum of the exchanged
virtual photon γ ∗ necessary to resolve a distance d ∼ 1 fm to be

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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|q| � �

2

1

d
≈ 2 GeV/c, (5.75)

where one can use the relation �c ≈ 200 MeV fm to convert a length into a momen-
tum. Using the DIS notation, the four-momentum transfer q = � − �′ from the elec-
tron probe to the probed system of mass M is given by

q = (E − E ′, � − �′) ≡ (ν, q) (5.76)

If we denote the initial and final four-momentum of the system by P and P ′, con-
servation of energy and momentum implies

P + q = P ′ ⇒ −q2

2Mν
= 1 − W 2 − M2

2Mν
≡ x, (5.77)

where the Bjorken variable x ∈ [0, 1] quantifies the degree of inelasticity of the
scattering (x = 1 corresponds to a purely elastic scattering). From Eq. (5.76) and
Eq. (5.77) we then have:

|q|2 = ν2 − q2 = ν2 + 2ν x M ⇒ |q| = √ν (ν + 2 x M). (5.78)

If both the energy and polar angle θ of the scattered electron can be measured, the
momentum transfer is simply given by geometry:

|q| =
√

E2 + E ′ 2 − 2E E ′ cos θ, (5.79)

where the small electron mass can be usually neglected. Depending on the energy/
angular acceptance of the experiment, Eq. (5.78) or Eq. (5.79) together with
Eq. (5.75) determine the necessary beam energy.

Notice that Eq. (5.75) should be taken as an order-of-magnitude estimate rather
than a lower bound: if the probed system has a smooth charge distribution, the
interaction with the virtual photon is suppressed at high energy by the lack of high-
frequencymodes. For example, if the system is a spin-1/2 particle of linear dimension
d with no other intrinsic length scales, the generic quantum-mechanical current Jμ

for an elastic scattering in momentum-space can be parametrised as

Jμ(p, p′) = ū(p′)
[

F1(q
2)γμ + iκ

qνσμν

2M
F2(q

2)

]
u(p), (5.80)

where F1,2(q2) are the Lorentz-invariant form factors and paramerise the electric
and magnetic dipole interaction with the photon, while κ is the anomalous magnetic
moment (κ = −1 for electrons and κ = 1.79 for protons). Such a current gives rise
to the differential cross section:
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dσ

dΩ
= α2 cos2 θ

2

4E2 sin4 θ
2

E ′

E

[(
F2
1 − q2 κ2F2

2

4M2

)
− q2

2M2
(F1 + κ F2)

2 tan2
θ

2

]
. (5.81)

The form factors are proportional to the Fourier transform of the charge distribution
of the hadron evaluated at the momentum transfer (in the centre-of-mass frame,
q2 = −|q|2). For smooth charge distributions characterised by a typical length scale
d, the form factors are concentrated at values |q| ∼ �/d1 and such that they vanish in
the limit of large momentum transfers, thus suppressing the cross section as shown
by Eq. (5.81). Therefore, for systems of dimension d, the momentum transfer should
not exceed a few times �/d.

Bando n. 1N/R3/SUB/2005

Problem 5.31 Acentre-of-mass energy of 270 + 270GeVas obtained at the proton-
antiproton SPS collider at CERN was sufficient for producing W and Z0 bosons,
albeit with a reduced margin. Why?

Discussion

When two hadrons ha and hb undergo a large-momentum transfer scattering in a
symmetric circular collider at a centre-of-mass energy

√
s � mh , the final state pro-

duced by the binary parton interaction is characterised by zero transverse momentum
(at LO) but a finite longitudinal momentum Pz and energy E . With the convention
that ha moves along the +z direction, the total energy Pz and E are related to the
parton fractions xa and xb by the relation:

⎧
⎨

⎩

(xa + xb)
√

s
2 = E

(xa − xb)
√

s
2 = Pz

⇒ xa,b = E ± Pz√
s

. (5.82)

The centre-of-mass energy
√

ŝ of the partonic interaction is given by:

√
ŝ =

√
2 p̂a p̂b = √

xa xb s. (5.83)

The centre-of-mass energy available for the partonic collision is therefore a factor of√
xa xb smaller than the collider energy.

Solution

The dominant W ± production channel at a proton-antiproton collider is via the Drell-
Yan s-channel production:

1Consider for example the case of a linear “box” of half-size d: the Fourier transform is proportional
to sin(d|q|/�)

|q| , which is concentrated in the region |q| � �/d.
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u d̄ → W +, d ū → W − (5.84)

In both cases, the scattering can involve two valence quarks. The average momentum
fraction of the incoming proton (antiproton) taken by uV (ūV) and dV (d̄V) is given
by:

〈
xu
〉
p = 〈xū

〉
p̄ =

∫ 1

0
dx x uV(x),

〈
xd
〉
p = 〈xd̄

〉
p̄ =

∫ 1

0
dx x dV(x). (5.85)

Referring to Fig. 5.2 (right), we can estimate the integrals of Eq. (5.85) from the area
below the corresponding function. Approximating these functions by triangles, we
can estimate:

〈
xu
〉
p ≈ 1

2
· 0.5 〈

xd
〉
p ≈ 1

2
· 0.25, (5.86)

thus giving an average partonic centre-of-mass energy of:

〈√
ŝ
〉 ≈
√〈

xu
〉
p

〈
xd
〉
p

√
s = √

0.25 · 0.12 · 540 GeV ≈ 95 GeV, (5.87)

which is just enough to produce both W ± and Z0 bosons.

Suggested Readings

The first direct production of W ± bosons at a collider has been achieved at the proton-
antiproton SPS synchrotron at CERN. The reader is encouraged to go through the
discovery paper published by the UA1 Collaboration [29].

Bando n. 1N/R3/SUB/2005

Problem 5.32 Sketch the structure functions x F3(x), F2(x), and g(x) at Q2 =
10 GeV2. How do the structure functions evolve as a function of the Q2 of the
interaction?

Discussion

The structure functions Fi are adimensional functions that enter the theoretical
expressions for DIS cross sections. They are different for electromagnetic (Fγ

i ) and
charged-current interactions (Fν

i , F ν̄
i ). To a more formal level, they are defined in

terms of the hadronic tensor Hμν(q, p), where q = � − �′ is the four-momentum
transfer and p is the initial hadron four-momentum, by the relation:

Hμν(p, q) = −F1 gμν + F2 pμ pν + i F3 εμν
στ pσ qτ . (5.88)
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Given that these functions are adimensional, they must depend on the ratio between
q2, pq, and of any other intrinsic mass scale M2. In the LO parton-model, they are
functions of x = −q2/2pq and are proportional to particular combinations of parton
density functions evaluated at the Bjorken fraction x . At NLO, they receive Q2-
dependent corrections of O(αs), which make them evolve with energy as predicted
by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations.

The LO prediction for the structure functions is:

Fγ

1 (x) = 1
2

[
∑

d, u

1
9 (d(x) + d̄(x)) + 4

9 (u(x) + ū(x))

]

Fν
1 (x) = d(x) + ū(x), F ν̄

1 (x) = u(x) + d̄(x)

Fγ,ν,ν̄

2 (x) = 2 x Fγ,ν,ν̄

1 (x)

Fγ

3 (x) = 0

Fν
3 (x) = 2

[
∑

d, u
d(x) − ū(x)

]

, F ν̄
3 (x) = 2

[
∑

d, u
u(x) − d̄(x)

]

(5.89)

Here, u and d are the PDF for up- and down-type quarks in the proton. The middle
equation is known as Callan-Gross relation and is valid for spin-1/2 quarks.

Solution

The function x Fν+ν̄
3 (x), averaged for neutrino and antineutrino data, is proportional

to the difference between the quark and antiquark PDF:

x Fν+ν̄
3 = 2 x

∑
(u − ū + d − d̄) ∝ x qV. (5.90)

The structure function Fν
2 (x) is instead proportional to the sum of the quark PDF’s.

The difference between x F3 and F2 is therefore proportional to the antiquark density
q̄ .

The structure functions evolve with the Q2 of the interaction according to the
DGLAP evolution equations, see Problem 5.38. The relative change of the structure
function Fi with respect to Q2 can be estimated to be:

d Fi

Fi
∼ αs

d Q2

Q2
. (5.91)

At larger momentum transfer, valence quarks q of large momentum fraction x are
resolved more and more into collinear q g pairs, thus suppressing the q density at
large x-values compared to low x-value, see Problem 5.38. In turn, the gluon and sea
quark densities are enhanced at higher Q2. Figure5.2 shows the functions x f (x, Q2)

for different parton flavours and for two values of Q2 [9].
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Fig. 5.2 The bands are x times the unpolarized parton distributions f (x) (where f =
uv, dv, u, d, s ≈ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0 global analysis at scales Q2 =
10 GeV2 (left) and Q2 = 104 GeV2 (right), with αs(M2

Z ) = 0.118 (from Ref. [9])

Suggested Readings

The DGLAP evolution equations are discussed in detail in dedicated textbooks like
Ref. [18, 19].

Bando n. 1N/R3/SUB/2005

Problem 5.33 How do the electromagnetic and strong coupling constants evolve as
a function of Q2?

Discussion

The running of the coupling constants as a function of the renormalisation scaleμ2 is
described by a Renormalisation Group Equations (RGE). In the SM, there are three
independent gauge couplings g1 ≡ √

5/3 gY ,2 g2, and g3 associated with the U (1)Y ,
SU (2)L , and SU (3)C groups. At one loop, the three RGE’s are given by:

2The normalisation factor of
√
5/3 is conventional and is inspired by GUT theories.
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dαi

d lnμ2
= −β0 α2

i , with β0 =

⎧
⎪⎪⎨

⎪⎪⎩

− 41
10×4π g1

+ 19
6×4π g2

+ 7
4π g3

(5.92)

where αi = g2
i /4π . See e.g. Ref. [30] for the full expression up to four-loops.

Solution

An ODE like Eq. (5.92) gives rise to a solution of the form:

α(μ2) = α(μ2
0)

1 + β0 α(μ2
0) ln

(
μ2

μ2
0

) . (5.93)

If β0 > 0, the solution gives rise to a monotonically decreasing coupling constant
and to asymptotic freedom (a “free” theory at high energy). This is the case for the
non-abelian groups like SU (3)C , see Problem 5.34. ForU (1)Y , the solution is instead
monotonically increasing and develops a Landau pole at a scale:

Λ = μ0 exp

[
− 1

2β0α(μ2
0)

]
. (5.94)

The electromagnetic coupling is given by

e = g2 sin θW = gY√
1 + g2

Y /g2
2

. (5.95)

with (gY /g2)2 = tan2 θW ≈ 0.30 at μ2 = m2
Z . Since e is mostly given by gY , it also

evolves like g1, and thus develops a Landau pole at an very large energy scale, indeed
far above the Plank scale MP = (� c/G N )1/2 = 1.2 × 1019 GeV. At low energy,
where only the quark and charged lepton loops contribute, the one-loop RGE for α

is given by:

dα

d lnμ2
= α2

3π

∑

i

q2
i Ni �(μ − mi ), (5.96)

where Ni is the number of coulours for particle i . This equation can be solved to
yield:

α(μ2) ≈ α(μ2
0)

[

1 − α(μ2
0)

3π

∑

i

q2
i Ni ln

μ2

m2
i

]−1

. (5.97)
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For example, when running from the electron mass up to the Z0 mass, α increases
by about 6%, moving from 1/137.0 to about 1/128.9.

Suggested Readings

A recent review of the RGE’s in the SM at the light of the recently discovered Higgs
boson can be found in Ref. [30].

Problem 5.34 The evolution equation of the running strong coupling αs is given
by:

dαs

d ln Q2
= β(αs) = −αs

[
αsβ0 + α2

s β1 + · · · ] (5.98)

where the coefficients β0 and β1 are defined by:

β0 = 11CA − 4 TR n f

12π
, β1 = 11C2

A − (6CF + 10CA)TR n f

24π2
, (5.99)

with TR ,CF , andCA the Dinkin index and the Casimir of the fundamental and adjoint
representation, respectively, while n f indicates the number of active quark flavours.

1. Solve the evolution equation at one-loop level with the boundary condition
αs(Λ

(0)
QCD) = ∞. What is the value of Λ

(0)
QCD given that αs(M2

Z ) = 0.118, n f = 5,
and MZ = 91.187 GeV?

2. Solve the evolution equation at two-loop level with the boundary condition
αs(Λ

(1)
QCD) = ∞.

Discussion

The introduction of a running coupling constant αs(Q2) in the calculation of phys-
ical quantities removes the dependence on the unphysical renormalisation scale μ

introduced by dimensional regularisation: the explicit μ-dependence of the physical
amplitude is re-absorbed by defining a running coupling αs(Q2) evaluated at the
physical scale Q2: by using the functional form αs(Q2) and a measurement at some
reference scale Q2

0 through a physical process, the running strong coupling can be
predicted at any other scale Q2.

Solution

At the one loop-level, only the β0 term is retained in Eq. (5.98), giving

Q2 dαs

d Q2
= −β0 α2

s ,
dαs

α2
s

= −β0
d Q2

Q2
, d

(
− 1

αs

)
= −β0 d ln Q2

1

αs(Q2)
− 1

αs(Q2
0)

= β0 ln
Q2

Q2
0

(5.100)
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If we choose Q0 ≡ Λ
(0)
QCD such that αs(Λ

(0)
QCD) = ∞, then:

αs(Q2) = β0

ln(Q2/Λ
(0) 2
QCD)

. (5.101)

By inverting the formula above evaluated at some reference scale Q0:

Λ
(0)
QCD = Q0 exp

[
− 1

2β0

1

αs(Q0)

]
. (5.102)

By using the measured value αs(M2
Z ) = 0.118 together with the group-theoretical

value

β0 = 11CA − 4 TR n f

12π
= 11 × 3 − 4 × 1

2 × 5

12π
= 0.610, (5.103)

one obtains:

Λ
(0)
QCD = 91.2 exp

(
− 1

2 × 0.610 × 0.118

)
GeV ≈ 88 MeV. (5.104)

Another popular way of writing Eq. (5.101) is:

αs(Q2) = αs(Q2
0)

1 + β0 αs(Q2
0) ln

Q2

Q2
0

, (5.105)

where an arbitrary scale Q2
0 is introduced in place of ΛQCD.

At the two loop-level:

Q2 dαs

d Q2
= −β0 α2

s − β1 α3
s ,

(
1

β0

)
dαs

−α2
s (1 + β1

β0
αs)

= d ln Q2 (5.106)

Next, we break the left-hand side of this equation into the sum of functions with
simple primitive:

(
− 1

β0

)
1

α2
s (1 + β1

β0
αs)

=
(

− 1

β0

)[
A

α2
s

+ B

αs
+ C

1 + β1

β0
αs

]

, (5.107)

giving the solution:

A = 1, B = −β1

β0
, C = +

(
β1

β0

)2

. (5.108)
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Replacing the constants with the values of Eq. (5.108), we get:

(
1

β0

)[

−dαs

α2
s

+ β1

β0

dαs

αs
−
(

β1

β0

)2 dαs

1 + β1

β0
αs

]

= d ln Q2

(
1

β0

)[

d

(
1

αs

)
+ β1

β0
d

(

ln
αs

1 + β1

β0
αs

)]

= d ln Q2,

(
1

β0

)[
1

αs
|Q2

Q2
0
+ β1

β0
ln

αs

1 + β1

β0
αs

|Q2

Q2
0

]

= ln
Q2

Q2
0

(5.109)

We now choose Q0 ≡ Λ
(1)
QCD such that αs(Λ

(1)
QCD) = ∞, then:

1

αs(Q2)
+ β1

β0
ln

β1αs

β0 + β1αs(Q2)
= β0 ln

Q2

Λ
(1) 2
QCD

. (5.110)

It is convenient to introduce the variable t ≡
[
ln Q2/Λ

(1) 2
QCD

]−1
, and work in the

assumption that t is small (indeed, modulo the factor β0 ≈ 0.6, t coincides with αs

at one-loop, so it is of order 10−1 at the EW scale). In this case, we can make the
approximation:

1

αs(Q2)
≈ β0

t
− β1

β0
ln

t

β2
0/β1 + t

, αs(Q2) = 1

β0
t

1

1 + β1

β2
0
t ln β2

0 /β1+t
t

, (5.111)

where we also use the fact that x ln x → 0 for x → 0, so that the second term at the
left-hand side of Eq. (5.111) can be neglected. By expanding at first order:

[
1 + C1t ln

(
C2

1

t
+ C3

)]−1

= 1 − C1t ln
1

t
+ O(t), (5.112)

we have:

αs(Q2) = 1

β0

1

log Q2

Λ
(1) 2
QCD

⎡

⎢⎢
⎣1 − β1

β2
0

log

(
log Q2

Λ
(1) 2
QCD

)

log Q2

Λ
(1) 2
QCD

.

⎤

⎥⎥
⎦ (5.113)

Figure5.3 shows a summary of measurements of αs as a function of the energy
scale Q.
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Fig. 5.3 Summary of
measurements of αs as a
function of the energy scale
Q. The respective degree of
QCD perturbation theory
used in the extraction of αs is
indicated in brackets (from
Ref. [9])

Suggested Readings

The reader is addressed to Chap.4.3 of Ref. [18] for a formal treatment of renormal-
isation and for the derivation of the β-function in QCD.

Problem 5.35 Find the relation between the colour factors TR , CF , and CA and the
branching probabilities for q → q g, g → g g, and g → q q̄ .

Solution

Consider the emission of a gluon ga , with a = 1, . . . , 8, from a quark qi , with i =
1, 2, 3, which then transforms into a quark q j . The colour part of the amplitude is
proportional to

A (qi → q j ga) ∝ T a
ji . (5.114)

Summing over the final colours and averaging over the initial ones:

∑
AA ∗ = 1

NC

∑

a

∑

i j

T a
ji T

a
ji

∗ = 1

NC
Tr

[
∑

a

T aT a

]

= NC CF

NC
= CF (5.115)

For the ga → gb gc splitting, the colour part is proportional to:

A (ga → gb gc) ∝ fabc (5.116)
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Summing over the final colours and averaging over the initial ones:

∑
AA ∗ = 1

NA

∑

abc

fabc f ∗
abc = 1

NA

∑

abc

(−i fabc)(−i facb) = 1

NA

∑

abc

T a
bcT

a
cb

= 1

NA
Tr

[
∑

a

T aT a

]

= CA. (5.117)

Here, we have used the antisymmetry of the structure constants fabc and the fact
that T a

bc = −i fabc are the generators of the adjoint representation of SU (3), with
Casimir CA1NA .

For the ga → qi q̄ j splitting, the colour part is proportional to:

A (ga → qi q̄ j ) ∝ T a
ji . (5.118)

Summing over the final colours and averaging over the initial ones we get:

∑
AA ∗ = 1

NA

∑

a

∑

i j

T a
i j T

a
i j

∗ = 1

NA
Tr

[
∑

a

T aT a

]

= NC CF

NA
= TR . (5.119)

The last equality has been obtained by using the relations:

∑

i j

T a
i j T

a
ji = TRδaa,

∑

aj

T a
i j T

a
ji = CFδi i (5.120)

The left-hand side of the two equations are identical upon summation over all indices,
which therefore implies:

TR Tr
[
1NA

] = CF Tr
[
1NC

] ⇒ TR NA = CF NC . (5.121)

Discussion

For SU (3), the following group identities hold:

TR

CF
= NC

N 2
C − 1

= 3

8
,

CA

CF
= 2 N 2

C

N 2
C − 1

= 9

4
, NA = N 2

C − 1 = 8. (5.122)

With the standard normalisation TR = 1/2, we then have CF = 4/3 and CA = 3.
When doing more involved calculations, tricks can be used to speed up the compu-
tation of colour factors. In particular, the antisymmetric tensor fabc can be always
exchanged for traces of T a matrices using the relation:

T aT b − T bT a = i fabcT c ⇒ fabc = − i

TR
Tr
[
T aT bT c − T bT aT c

]
(5.123)
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Suggested Readings

The calculation of the colour factors in the q q̄ → g g amplitude provides an instruc-
tive example of coulour algebra. A guided calculation can be found in Sect. 3.3.4 of
Ref. [18]

Problem 5.36 At the lowest order in QED, the interaction between an electron and
a positron in a bound state is represented by a diagram where a photon is exchanged
between a quark and an antiquark. Similarly, we can think of the QCD potential
that binds quarks inside hadrons as being mediated by the exchange of a gluon. The
potential is given by:

V QCD
qq = f

αs

r
, (5.124)

where f is a colour factor which depends on the colour of the quark and antiquark
states. Calculate the colour factor f for:

1. colour singlet quark-antiquark bound state |h〉 ∝∑i j δi j |qi q̄ j 〉.
2. colour octet quark-antiquark bound state |h; a〉 ∝∑i j λa

i j |qi q̄ j 〉.
3. totally antisymmetric state builded with three quarks |h〉 ∝∑i jk εi jk |qi q j qk〉.
Discussion

The potential V (x) can be calculated from the Fourier-transform of the non-
relativistic q q ′ → q q ′ amplitude corresponding to a single-gluon exchange. The
result from QED is the well-known Coulomb potential

V QED(r) = ± α

|r| , (5.125)

where the sign “+” applies to the q q → q q case, while the sign “−” applies to
q q̄ → q q̄ , see e.g. the discussion in Ref. [15]. Hence, the potential is predicted to
be repulsive (attractive) for a quark-quark (quark-antiquark) interaction. This result
depends on the Lorentz structure (ψ̄γ μψ) of the fermionic current in QED, and is
identical for the case of QCD. The only difference between the two theories arises
from the colour structure of the quark-quark-gluon vertex and from the colour wave-
function of the bound state, giving rise to the replacement

α → f αs, (5.126)

where fC is the colour factor that needs to be calculated.
We also prove that the three bound states above transform as singlets or octets, as

anticipated. First, we recall that under the same infinitesimal transformation U (θ) =
1 + iθaT a , θa � 1, quarks and antiquarks undergo the following transformation:
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qi → q ′
i = (δi j + iθaT a

i j ) q j (5.127)

q̄i → q̄ ′
i = (δi j − iθaT a

i j
∗
) q̄ j = (δi j − iθaT a

ji ) q̄ j (5.128)

This allows us to prove that for the meson singlet:

δ j i qi q̄ j → δ j i (δik + iθaT a
ik)(δl j − iθaT a

l j ) qk q̄l

≈ δ j i qi q̄ j + iθa(δ j iδ jl T
a

ik − δi jδik T a
l j ) qk q̄l

= δ j i qi q̄ j + iθa(T
a

lk − T a
lk) = δ j i qi q̄ j . (5.129)

It is easy to show that this holds true also for a finite transformation U , since:

δ j i qi q̄ j → δ j i Uil U ∗
mj ql q̄m = (U U †)lm ql q̄m = δ j i qi q̄ j . (5.130)

For the meson octet:

T a
ji qi q̄ j → T a

ji (δik + iθbT b
ik)(δ jl − iθbT b

l j ) qk q̄l

≈ T a
ji qi q̄ j + iθb(T

a
ji T b

ik δl j − T a
ji T b

l j δik) qk q̄l

= T a
ji qi q̄ j + iθb(T

a
li T b

ik − T b
l j T a

jk) qk q̄l

= T a
ji qi q̄ j + iθb[T a, T b]lk qk q̄l = T a

ji qi q̄ j + iθb(i f abc T c
lk) qk q̄l

= T a
ji qi q̄ j + iθb(−i f bac T c

lk) qk q̄l (5.131)

Remembering that T b
ac = −i fbac are the generators of the adjoint representation of

dimension N 2
C − 1 = 8, we have:

T a
ji qi q̄ j ≡ va → va + iθb T

b
ac vc, (5.132)

i.e. va transform like an octet of SU (3).
Finally, for the baryon singlet we have:

εi jk qi q j qk → εi jk (δil + iθbT b
il )(δ jm + iθbT b

jm)(δkn + iθbT b
kn) ql qm qn

≈ εi jk qi q j qk + εi jkθb(T
b

il + T b
jm + T b

kn) ql qm qn, (5.133)

and notice that the expression in parentheses is symmetric under exchange of any of
the i jk indexes, while the εi jk tensor is antisymmetric, and so the sum is zero. It is
easy to show that this holds true also for a finite transformation U , since:

εi jk qi q j qk → εi jk Uil U jm Ukn ql qm qn = | detU | εlmn ql qm qn = εi jk qi q j qk .

(5.134)
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Solution

• The wave-function of the bound state |h〉 is given by

|h〉 = N
∑

i j

δi j |qi q̄ j 〉, (5.135)

where δi j is the Kronecker tensor. The normalisation factor N can be readily
obtained by requiring the normalisation condition:

1 = 〈h|h〉 =
∑

i jkl

|N |2δikδ jlδi jδkl = |N |2Tr [1NC

]⇒ N = 1√
NC

(5.136)

Therefore, the colour factor is:

f =
∑

ai jkl

δi j√
NC

δkl√
NC

T a
ki T a

jl = 1

NC

∑

ai jkl

T a
ji T a

i j = 1

NC
Tr

[
∑

a
T a T a

]

= 1

NC
CF NC = CF

(5.137)

where we have used the identityCF ≡∑a T aT a = CF1NC , andCF is the Casimir
of the fundamental representation. With the usual normalisation TR = 1/2 of the
Dinkin index:

f = CF = N 2
C − 1

2N
= +4

3
. (5.138)

The factor f is positive: the resulting potential is identical to the one generated
by a single-photon exchange between a fermion-antifermion pair in QED, modulo
the replacement α → 4/3αs . The potential is therefore attractive.

• The wave-function of the bound state is given by

|h; a〉 = N
∑

i j

T a
i j |qi q̄ j 〉, (5.139)

whereT a
i j = λa

i j/2,withλa
i j the eightGell-Mannmatrices. Thenormalisation factor

N can be obtained by requiring the normalisation condition:

1 = 〈h; a|h; a
〉 = |N |2

∑

i jkl

T a
i j

∗T a
klδi jδkl =

∑

i j

|N |2T a
ji T

a
i j = |N |2Tr [T aT a

]
,

⇒ N = 1√
TR

, (5.140)
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where we have used the normalisation condition Tr
[
T aT b

] = TRδab. Therefore:

f = 1

TR

∑

bi jkl

T a
i j T

a
kl

∗T b
ki T

b
jl = 1

TR

∑

i jkl

T a
i j T

a
lk

[
TR(δklδi j − 1

NC
δkiδ jl)

]
=

= (Tr
[
T a
]
)2 − 1

NC
Tr
[
T aT a

] = − TR

NC
= −1

6
. (5.141)

We have made use of the completeness relation:

∑

b

T b
i j T

b
kl = TR

[
δilδ jk − 1

NC
δi jδkl

]
. (5.142)

The colour factor f is negative: the potential is therefore repulsive.
• The potential is generated by the exchange of a single gluon between two quarks,
the third one behaving like a spectator. The two quarks are in the antisymmetric
anti-triplet state: 3 ⊗ 3̄ = 6 ⊕ 3̄. The wave-function of the bound state is given by

|h〉 = N
∑

i jk

εi jk |qi q j qk〉, (5.143)

The normalisation factor N can be obtained by requiring the normalisation con-
dition:

1 = 〈h|h〉 = |N |2
∑

i jk,lmn

εi jk εlmn δil δ jmδkn = |N |2
∑

i jkl

εi jk εi jk = |N |2NC !,

N = 1√
NC ! . (5.144)

Therefore:

fC = 1

NC !
∑

ai jklmn

εi jk εlmn T a
li T a

mjδkn = 1

NC !
∑

ai jlm

[
δil δ jm − δim δ jl

]
T a

li T a
mj =

= −
∑

a

Tr
[
T a T a

] = −CF NC

NC ! = −2

3
, (5.145)

where we have used the relation
∑

i εi jkεimn = δ jmδkn − δ jnδkm . The colour factor
is negative. However, one should remember that this negative sign is relative to the
fermion-fermion amplitude, which is repulsive for the QED case, and therefore
the resulting potential is attractive.
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Suggested Readings

For a more exahustive discussion on the potentials generated by a single-exchange
of the force mediator, see Chap.4.7 of Ref. [15]. More details on colour algebra can
be found in Ref. [18]. The QCD potentials for bound states are also discussed in
Ref. [12].

Problem 5.37 Calculate the Pqq(z) and Pgq(z) kernel functions using the explicit
form of the related matrix elements.

Discussion

The kernel funcions, or Altarelli-Parisi splitting functions, can be derived by using
the covariant formalism in dimensional regularisation, see e.g. Chap. 3.6 of Ref. [18].
Alternatively, one can follow the original approach by Altarelli and Parisi [31] which
makes use of old-fashioned perturbation theory. The goal is to factorise the infinites-
imal cross section dσ for scattering of a lepton � off the parton A which undergoes
an almost collinear splitting A → B + C , in the form:

dσ(� + A → �′ + C) ∝
∫

dz
[( αs

2π

)
PB A(z)

]
× [dσ(� + B(z) → �′)

]
,

(5.146)

i.e. as the convolution of a universal function PB A(z), that gives the probability that
parton B takes a fraction z of the incoming parton A, with the cross section for the
DIS scattering � + B → B ′. Given that the matrix element for collinear splitting is
divergent, the cross section thus obtained will be proportional to an infinite factor∫

dp2⊥/p2⊥ which will be reabsorbed as a renormalisation of the parton pdf.

Solution

We consider the DIS process where a lepton with four-momentum � scatters against
a parton A with four-momentum pA via a space-like photon γ ∗ carrying four-
momentum q. Before interacting with γ ∗, the parton splits via A → B + C , where
C is the parton for which we will consider the collinear limit:

pB → (1 − z) pA, pC → z pA. (5.147)

After interacting with γ ∗, the parton B will have four-momentum pB ′ = pB + q.
In old-fashioned perturbation theory, this process occurs at the second perturbative
order, with an amplitude:

M f i =
∫

dν
M NR

νi M NR
f ν

Eν − Ei
, (5.148)
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where i, ν, f are eigenstates of H0, the initial and final energies are equal, linear
momentum is conserved at any vertex, and M NR

i→ν is the non-relativistic quantum-
mechanical transition amplitude. For the case of interest, we can write:

M�+A→�′+C =
∑

B M R
A→B+C M R

�+B→�′

2EB(EB + EC − E A)
, (5.149)

where the factor 2EB accounts for the relativistic wave-function normalisation
√
2E

used for the amplitudes at the numerator (using relativistic normalisation allows us to
use Feynman rules for calculating specific amplitudes). We use a coordinate system
such that:

pA = (E A, E A, 0, 0), pB =
(

zE A + p 2
⊥

2zE A
, zE A, 0, p⊥

)

pC = ((1 − z)E A + p 2
⊥

2(1 − z)E A
, (1 − z)E A, 0, −p⊥)

(5.150)

The first equation fixes the reference frame. The second and third express momentum
conservation along the longitudinal direction: z is then the momentum fraction taken
by the parton C and p⊥ is the transverse momentum and is treated as the perturbative
parameter onwhich all energies are expanded. The expression for the energies EB and
EC is correct up toO(p2⊥). Inserting the expressions above into Eq. (5.149), summing
over the colour and spin polarisation of the final-state partons and averaging over
those of the incoming parton:

∑
|M�+A→�′+C |2 =

∑
A,B,C |MA→B+C |2∑B |M�+B→�′ |2

4

(
zE A + p2⊥

2zE A

)2 (
zE A + p2⊥

2zE A
+ (1 − z)E A + p2⊥

2(1−z)E A
− E A

)2 =

=
∑

ABC |MA→B+C |2∑B |M�+B→�′ |2
( p2⊥)2/(1 − z)2

. (5.151)

The infinitesimal cross section dσ is obtained by integrating over the phase space of
the emitted parton:

dσ(� + A → C + �′) =
∫

d3pC

(2π)32EC

(
EB

E A

)
× dσ(� + B(z · pA) → �′)×

×
∑

A,B,C |MA→B+C |2
(p2⊥)2/(1 − z)2

(5.152)

where the factor EB/E A accounts for the incomingflux (dσ(� + B(z · pA) ∝ 1/EB).
The next step is to write the integration measure in terms of p⊥ and z:

∫
d3pC

(2π)32EC
=
∫

dpL d2p⊥
(2π)32(1 − z)E A

=
∫

1

16π2

dz

(1 − z)
d p2⊥ (5.153)
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Hence, Eq. (5.152) becomes:

dσ(� + A → C + �′) =

=
∫

d p2⊥ dz
1

16π2
z

(1 − z)

(1 − z)2

( p2⊥)2

∑

A,B,C
|MA→B+C |2 × dσ(� + B(z · pA) → �′)

=
∫ (

d p2⊥
p2⊥

)∫ 1

0
dz

[( αs

2π

) z(1 − z)

2 p2⊥

∑
|VA→B+C |2

]

× dσ(� + B(z · pA) → �′),

(5.154)

where the coupling factor gs has been factored out of the amplitude squared, and
VA→B+C governs the pure collinear splitting. Comparing with Eq. (5.154), the split-
ting function can then be extracted:

PB A = z(1 − z)

2 p2⊥

∑
|VA→B+C |2. (5.155)

Let’s now consider the two specific cases q → g q and g → q q̄ . For gluon emission
out of a quark, q → g q, the amplitude squared is given by:

∑
|Vq→gq |2 = 1

2
CF

∑

pol.

Tr{γ μ
/pBγ ν

/pA}εμε∗
ν =

= 2CF (pμ

B pν
A + pν

B pμ

A − gμν pA pB)

⎛

⎝
∑

pol.

εμε∗
ν

⎞

⎠ =

= 2CF (2pi
A p j

B + δi j (pA pB))δ⊥
i j , (5.156)

where the transverse tensor δ⊥
i j = δi j − pi

C p j
C/p 2

C has been introduced to project-out
only the physical polarisation states, with δ⊥

i j δ
j i = 2. We have:

pi
A p j

Bδ⊥
i j = pA · pB − (pA · pC)(pB · pC)

p 2
C

=

= zE2
A − (1 − z)E2

A

(
z(1 − z)E2

A − p2⊥
)

(1 − z)2E2
A + p2⊥

= p2⊥
(1 − z)2

+ O(p2⊥)

δi j (pA pB)δ⊥
i j = 2

(
E A

(
zE A + p2⊥

2zE A

)
− zE2

A

)
= p2⊥

z
(5.157)

Putting everything together:

∑
|Vq→gq |2 = 2CF

(
2 p2⊥

(1 − z)2
+ 2 p2⊥

2z

)
= 4 p2⊥

2z
CF

(1 + z)2

(1 − z)2
. (5.158)
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By using Eq. (5.155), the splitting function can then be computed as:

Pqq(z) = CF

(
1 + z2

1 − z

)
. (5.159)

For gluon splitting, g → q q̄ , we instead have:

∑
|Vg→qq̄ |2 = 1

2
TR

∑

pol.

Tr{γ μ
/pBγ ν

/pC }εμε∗
ν = 2TR (2pi

B p j
C + δi j (pB pC))δ⊥

i j ,

(5.160)

with δ⊥
i j = δi j − pi

A p j
A/p2A. Carrying out the contraction:

pi
B p j

Cδ⊥
i j = zE2

A(1 − z) − p 2⊥ − zE2
A(1 − z)E2

A

E2
A

= −p 2⊥ (5.161)

δi j (pB pC )δ⊥
i j = 2

((

zE A + p 2⊥
2zE A

)(

(1 − z)E A + p 2⊥
2(1 − z)E A

)

− z(1 − z)E2
A + p 2⊥

)

=

= 2p 2⊥
[
1 − z

2z
+ z

2(1 − z)
+ 1

]
= − 2p 2⊥

2z(1 − z)
. (5.162)

Putting everything together:

∑
|Vg→qq̄ |2 = 2TR (2p 2

⊥)
(1 − z)2 + z2

2z(1 − z)
. (5.163)

By using Eq. (5.155), the splitting function can then be computed as:

Pqg(z) = TR
[
(1 − z)2 + z2

]
. (5.164)

To summarise, the regularised (LO) Altarelli-Parisi splitting functions are:

P (0)
qq (z) = CF

(
1 + z2

1 − z

)

+
= CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
= P (0)

q̄q̄ (z)

P (0)
gq (z) = P (0)

qq (1 − z) = P (0)
gq̄ (z)

P (0)
qg (z) = TR

[
(1 − z)2 + z2

] = P (0)
q̄g (z)

P (0)
gg (z) = 2CA

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]
+ 11CA − 4 TR n f

6
δ(1 − z).

(5.165)
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We have used the “+” prescription defined as:

F(z)+ = F(z) − δ(1 − z)
∫ 1

0
dy F(y), (5.166)

such that:

∫ 1

x
dz g(z)

[
f (z)

1 − z

]

+
=
∫ 1

x
dz [g(z) − g(1)] f (z)

1 − z
− g(1)

∫ x

0
dz

f (z)

1 − z

(5.167)

Suggested Readings

This exercise is vastly inspired by the original paper by Altarelli and Parisi [31].

Problem 5.38 Calculate theMellinmoments of the regularizedAltarelli-Parisi split-
ting functions.

Discussion

Given a function f (x) with x ∈ [0, 1], its nth Mellin moment is defined as:

f̃ (n) =
∫ 1

0
dx xn−1 f (x) ⇔ f (x) = 1

2π i

∫ c+i∞

c−i∞
dn x−n f̃ (n). (5.168)

The Mellin moments allows to transform the integro-differential DGLAP evolution
equation into a pure differential one:

μ2 ∂ f

∂μ2
(x, μ2) = αs

2π

∫ 1

x

dz

z
P (0)(z) f

(
x

z

)

= αs

2π

∫ 1

0
dz
∫ 1

0
dy P (0)(z) f (y) δ(x − z y). (5.169)

Taking the n − 1 moment on both sides of Eq. (5.169), we get:

∫ 1

0
dx xn−1

(
μ2 ∂ f

∂μ2 (x, μ2)

)
= αs

2π

∫ 1

0
dx xn−1

∫ 1

0
dz
∫ 1

0
dy P(0)(z) f (y) δ(x − z y)

μ2 ∂

∂μ2 f̃ (n, μ2) = αs

2π

∫ 1

0
dz zn−1P(0)(z)

︸ ︷︷ ︸
γ (0)(n)

∫ 1

0
dy yn−1 f (y)

︸ ︷︷ ︸
f̃ (n,μ2)

, (5.170)
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Solution

For the case g → g(z) g(1 − z), we have:

γ (0)
gg (n) =

∫ 1

0
dx xn−1Pgg(x) (5.171)

The various terms that enter Pgg can be integrated to give:

∫ 1

0
dx xn−1 x

(1 − x)+
=
∫ 1

0
dx

xn − 1

1 − x
=
∫ 1

0
dx

(x − 1)(xn−1 + · · · + 1)

1 − x
=

−
∫ 1

0
dx (xn−1 + · · · + 1) = −

[
1

n
+ 1

n − 1
+ · · · + 1

]
= −

n∑

m=1

1

m
(5.172)

∫ 1

0
dx xn−1 1 − x

x
=
∫ 1

0
dx (xn−2 − xn−1) = 1

n(n − 1)
(5.173)

∫ 1

0
dx xn−1x(1 − x) =

∫ 1

0
dx (xn − xn+1) = 1

(n + 1)(n + 2)
(5.174)

∫ 1

0
dx δ(1 − x) = 1 (5.175)

Putting everything together, we thus have:

γ (0)
gg (n) = 2CA

[

−
n∑

m=1

1

m
+ 1

n(n − 1)
+ 1

(n + 1)(n + 2)

]

+ 11CA − 4 TR n f

6
.

(5.176)

For the case q → q(z) g(1 − z), we have:

γ (0)
qq (n) = CF

∫ 1

0
dx xn−1

(
1 + x2

1 − x

)

+
= CF

∫ 1

0
dx (xn+1 − 1)

1 + x2

1 − x
=

= CF

∫ 1

0
dx

x − 1

1 − x
(xn−2 + · · · + 1)(1 + x2)

= CF

[
−
∫ 1

0
dx
[
(xn−2 + · · · + 1) + (xn + · · · + x2)

]]
=

= −CF

[
1

n − 1
+ · · · + 1 + 1

n + 1
+ · · · + 1

3

]
=

= −CF

[

2
n−1∑

m=1

1

m
+ 1

n + 1
+ 1

n
− 1

2
− 1

]

= −CF

[

2
n∑

m=1

1

m
+ 1

n + 1
− 1

n
− 3

2

]

= CF

[
1

n(n + 1)
+ 3

2
− 2

n∑

m=1

1

m

]

. (5.177)
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For the case g → q(z) q̄(1 − z), we have:

γ (0)
qg (n) = TR

∫ 1

0
dx xn−1

[
(1 − x)2 + x2

] = TR

∫ 1

0
dx
[
2xn+1 − 2xn + xn−1

] =

= TR

[
2

n + 2
− 2

n + 1
+ 1

n

]
= TR

n2 + n + 2

n(n + 1)(n + 2)
. (5.178)

For the case q → g(z) q(1 − z), we have:

γ (0)
gq (n) = CF

∫ 1

0
dx xn−1

(
1 + (1 − x)2

x

)
= CF

∫ 1

0
dx
[
2xn−2 − 2xn−1 + xn

] =

= CF

[
2

n − 1
− 2

n
+ 1

n − 1

]
= CF

n2 + n + 2

n(n + 1)(n − 1)
(5.179)

We conclude by proving the necessity for the “+” prescription in the definition of
the kernel functions. Let’s study the implications of the DGLAP evolution functions
to the non-singlet quark density q − q̄ ≡ qNS3:

{
∂qi

∂ ln Q2 =∑ j Pqi q j ⊗ q j +∑ j Pqi q̄ j ⊗ q̄ j + Pqi g ⊗ g
∂q̄i

∂ ln Q2 =∑ j Pq̄i q̄ j ⊗ q̄ j +∑ j Pq̄i q j ⊗ q j + Pq̄i g ⊗ g
(5.180)

Using flavour symmetry, the set of kernel functions at LO read as:

Pqi q j (z) = Pq̄i q̄ j (z) ≡ PNS
qq (z) δi j + PS

qq(z)

Pqi g(z) = Pq̄i g(z) ≡ Pqg(z)

Pqi q̄ j (z) = Pq̄i q j (z) ≡ PNS
q̄q (z) δi j + PS

q̄q(z)

which allows to simplify Eq. (5.181) to:

{
∂qi

∂ ln Q2 = PNS
qq ⊗ qi + PS

qq ⊗∑ j q j + PNS
q̄q ⊗ q̄i + PS

q̄q ⊗∑ j q̄ j + Pqg ⊗ g
∂q̄i

∂ ln Q2 = PNS
qq ⊗ q̄i + PS

qq ⊗∑ j q̄ j + PNS
q̄q ⊗ qi + PS

q̄q ⊗∑ j q j + Pqg ⊗ g

(5.181)

Given that PS
qq and Pq̄q start only at O(α2

s ), taking the difference we have:

∂qNS
i

∂ ln Q2
= PNS

qq ⊗ qNS
i . (5.182)

Since
∫ 1
0 dx qNS

i (x) must be conserved (it is the amount of valence quarks qi in the

hadron), it follows that
∫ 1
0 dz PNS

qq = 0, since:

3for simplicity, we absorb the coefficient αs/2π inside the splitting function.
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∫
dx xn [ f ⊗ g] (x) =

∫
dx xn f (x) ·

∫
dx xng(x). (5.183)

Hence, the splitting function Pqq(z) at order O(αs) derived by using perturbation
theory is infact a distribution, and such that its integral is null. This amounts to
replace:

CF

(
1 + z2

1 − z

)
→ CF

(
1 + z2

1 − z

)

+
= CF

(
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

)
. (5.184)

The last equality can be proved in the sense of distributions:

∫ 1

0
dz

(
1 + z2

1 − z

)

+
g(z) =

∫
dz [g(z) − g(1)]

1 + z2

1 − z

=
∫

dz
g(z)(1 + z2) − 2g(1) + g(1) − z2g(1)

1 − z
=
∫

dz
1 + z2

(1 − z)+
g(z) + g(1)

∫
dz (1 + z)

=
∫

dz
1 + z2

(1 − z)+
g(z) +

∫
dz

3

2
δ(1 − z)g(z) =

∫
dz

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]
g(z),

(5.185)

which proves the equality in the sense of distributions. The requirement that the
total hadron momentum is conserved further constrains the Pqg and Pgg splitting
functions:

∫ 1

0
dx x

⎡

⎣g(x) +
∑

f =q,q̄

f (x)

⎤

⎦ = const. ⇒
∫ 1

0
dx x

⎡

⎣ ∂g

∂ ln Q2 +
∑

f

∂ f

∂ ln Q2

⎤

⎦ = 0,

∫ 1

0
dx x

[
Pgg + 2n f Pgq

]⊗ g +
∫ 1

0
dx x

[
Pgq + Pqq

]⊗
∑

f

f = 0 (5.186)

Then, by the law of convolutions, we must have:

∫ 1

0
dx x

[
Pgg + 2 n f Pgq

] = 0,
∫ 1

0
dx x

[
Pgq + Pqq

] = 0. (5.187)

A quick calculation reveals that this is indeed the case, thus justifying the coefficient
of the δ function in the Pgg splitting function.

Suggested Readings

More details on the Mellin moments applied to the DGLAP equation can be found
in Ref. [18].
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5.3 Flavour Physics

From the structure of the SM Lagrangian of Eq. (5.39) complemented with the
Yukawa sector (5.42), three neat consequences on the conservation of flavour arise.
Neglecting the neutrino mass, which is an excellent approximation except when
considering neutrino oscillations, we can state them in the form of theorems.

Theorem 5.1 There is no flavour transition in the lepton sector.

As seen in Problem 5.47, the minimal extension of the SMwhich allows for neutrino
masses introduces three right-handed neutrinos NR . Equation (5.42) should be then
extended to include an additional term whose effect would be to misalign the lepton
mass basis from the flavour basis by a the unitary matrixU , called Pontecorvo-Maki-
Nakagawa-Sakata matrix (PMNS), in full analogy to the quark sector. Apart from
neutrino oscillations, there are no other observable lepton-flavour violating effects
caused by the presence of such right-handed particles: this is a consequence of the
large mass of the right-handed neutrinos that suppresses any lepton-flavour violating
amplitude to a negligible level.

Theorem 5.2 In the quark sector, flavour transitions can only occur in the charged
current interaction amplitude d j → W − ui (and its complex conjugate), whose
flavour dependence is encoded in the CKM matrix.

The lack of flavour violation in the neutral-current interactions is a result of
the neutral weak current being flavour-diagonal, whereas the charged-weak current
mixes the isospin doublets thanks to the off-diagonal T ± operators, see Eq. (5.62).
This fact, together with the unitarity of the CKM matrix, is at the basis of the
Glashow-Iliopoulos-Maiani mechanism (GIM), which explains the suppression of
flavour-changing neutral currents (FCNC) in hadronic decays: besides being loop-
suppressed, FCNC amplitudes would be identically zero if the quark masses were
degenerate. For example, consider the diagram shown in Fig. 5.4 that contributes to
the FCNC amplitude t → c γ . For each down-type quark di running in the loop, one
has a contribution proportional to Vci V ∗

ti :

A =
∑

i=u,s,b

f

(
m2

i

m2
W

)
Vci V ∗

ti . (5.188)

Fig. 5.4 Diagram
contributing to the FCNC
t → c γ amplitude

t dit c

W

γ

V ∗
ti Vci
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The unitarity of theCKMmatrix implies
∑

i=u,s,b Vci V ∗
ti = 0, thus giving a vanishing

amplitude in the limit of identical quark masses (see the discussion in Ref. [32] for
further details).

Theorem 5.3 Modulo a possible effect in the strong interactions (strong CP-
problem), C P violation can only take place to the extent that the CKM matrix is
complex.

The strong C P-problem is related to the unnatural suppression of a tree-level C P-
violating gluon-gluon interaction term of the form:

LC P−strong = θQCD
∑

a

εμνρσ Ga
μν Ga

ρσ (5.189)

which, being renormalisable and of dimension d = 4, would naturally find its place
in the minimal SM Lagrangian. Although this term is equivalent to a total derivative,
hence it would give vanishing contributions to scattering amplitudes, it also gives to
non-perturbative effects that contribute to C P-odd observables, like electric dipole
moments. From current limits, one finds θQCD � 10−9.

Leaving aside the neutrino sector, the only source of C P-violation comes from
the charged-weak interaction. Indeed, from the transformation properties under C P
of the operators appearing in the SM Lagrangian, reported in Table5.4, the only
operator which is not invariant is exactly the one appearing in Eq. (5.43) to the extent
that V cannot be made real by any re-phasing of the quark fields, as it is the case for
three quark generations.

To this purpose, it is useful to remember Wolfenstein’s parametrisation of the
CKM matrix

Table 5.4 Transformation properties under C P of the operators appearing in the SM Lagrangian.
Every Lorentz index with a tilde requires an overall − sign if it is a space index or a + sign if it is
a time index

O C P O C P† Description

Ga
μ(x, t) −Ga

μ̃
(−x, t) Gluon fields

Aμ(x, t) −Aμ̃(−x, t) Photon field

Zμ(x, t) −Zμ̃(−x, t) Z field

W ±
μ (x, t) −W ∓

μ̃
(−x, t) W ± fields

h(x, t) h(−x, t) Higgs field

ψ̄γμχ (x, t) −χ̄γμ̃ψ (−x, t) Vector current

ψ̄γμγ5χ (x, t) −χ̄γμ̃γ5ψ (−x, t) Axial current

ψ̄χ(x, t) χ̄ψ(−x, t) Fermion mass

Fμν Fμν Fμν Fμν Field strength

εμνρσ Fμν Fρσ −εμνρσ Fμν Fρσ Dual field strength
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V =
⎛

⎝
1 − λ2/2 λ λ3 A(ρ − iη)

−λ 1 − λ2/2 λ2 A
λ3 A(1 − ρ − iη) −λ2 A 1

⎞

⎠+ O(λ4) (5.190)

which, besides making evident the presence of one irreducible phase,4 provides
the order-of-magnitude of the various entries in terms of the expansion parameter
λ = sin θC ≈ 0.22.

Experimentallty, C P-violation has been observed from effects due to 4-fermion
interactions that change strangeness and beauty. Considering the case of ΔS �= 0
transitions, the effective lagrangian can be schematically decomposed as the sum of
three pieces [14]:

Leff. = A (s̄LγμdL )(s̄Lγ μdL )
︸ ︷︷ ︸

ΔS=2

+
∑

q
Bq (s̄LγμdL )(q̄ γ μ q)
︸ ︷︷ ︸

ΔS=1

+
∑

�

C� (s̄LγμdL )(�̄ γ μ �)
︸ ︷︷ ︸

ΔS=1, semilept.

(5.191)

Violation of C P arises from an irreducible phase present among the coefficients A,
Bq , and C�. An irreducible phase between A and any of the Bq is at the origin of
the indirect violation of C P observed in the mass mixing of neutral kaons. A phase
between the Bq operators, which are responsible for the flavour-changing decay of
mesons, is instead at the origin of the direct violation of C P , observed in the K 0 and
B0 decay.

Problems

Bando n. 1N/R3/SUB/2005

Problem 5.39 Explain how the physics of K mesons has contributed to the com-
prehension of subnuclear physics in general.

Discussion

The K 0 and K̄ 0 are eigenstates of the strong hamiltonian. In the SU (3) flavour repre-
sentation, they are members of the pseudo-scalar meson octet with isospin I = 1/2
and strangeness S = +1 and S = −1, respectively. They are also one the antiparticle
of the other. In the absence of weak interactions, they would be stable. The weak
interaction introduces ΔS = 1/2 and ΔS = 3/2 transitions that make the neutral
kaons decay predominantly to two or three pions, or via the semileptonic decays
K 0 → π− �+ ν� and K̄ 0 → π+ �− ν̄� (in the latter, the lepton charge is prescribed
by theΔS = ΔQ rule).With the phase conventionC P |K 0〉 = |K̄ 0〉, the linear com-
binations

4The location of the phase in the CKMmatrix is purely conventional, since only rephasing-invariant
combinations of the CKM elements are truly observable.
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|K 0
1 〉 = |K 0〉 + |K̄ 0〉√

2
, |K 0

2 〉 = |K 0〉 − |K̄ 0〉√
2

(5.192)

are eigenstates of C P with eigenvalue ±1, respectively. If the strong and weak
Hamiltonian is postulated to be C P-invariant, then the mass eigenstates must also be
eigenstates of C P . Hence, under the assumption that C P is conserved, the effective
Hamiltonian matrix H̃ in the K 0/K̄ 0 basis reads as:

H̃ = P (H0 + R) P =
(

M − i Γ
2 M12 − i Γ12

2
M12 − i Γ12

2 M − i Γ
2

)
= U−1

(
m1 − i Γ1

2 0
0 m2 − i Γ2

2

)
U,

with U = 1√
2

(
1 1

−1 1

)
, M = m1 + m2

2
, Γ = Γ1 + Γ2

2
, (5.193)

where P is the projector to the strong eigenstates basis, and mi and Γi are the
mass and width of the two mass eigenstates |K 0

1,2〉, respectively. When neutral kaons
are produced by the strong interaction, like π− p → Λ0 K 0, they start their life
as eigenstates of the strong Hamiltonian, and then propagate according to the full
Hamiltonian.

|Ψ (τ)〉 = 1√
2

[
e
−i
(

m1−i Γ1
2

)
τ |K 0

1 〉 + e
−i
(

m2−i Γ2
2

)
τ |K 0

2 〉
]

, (5.194)

where τ is the proper time. Owing to the different mass, the physical state, that
propagates by virtue of Eq. (5.193), oscillates between the K 0/K̄ 0 states, giving rise
to a time-dependent transition amplitude with frequency in the rest frame given by
Δm/�. Furthermore, since the K 0

2 has C P = −1, it can only decay to three-pions or
semileptonically, with a total decay rate that is a factor of about 1.7 × 10−3 smaller
than for K1. This hierarchy in lifetimes allows to distinguish between the two mass
eigenstates by separating the short- and long-lived components of K 0/K̄ 0-initiated
beams.

As shown by Eq. (5.193), the mass differenceΔm is related to theΔS = 2 ampli-
tude

〈
K̄ 0|H |K 0

〉 = M12 by the relation Δm = 2|M12|. This amplitude is described,
at leading order, by a diagram like the one shown in Fig. 5.5. The CKM matrix ele-
ments are such that this amplitude is mostly given by the diagram corresponding to
the exchange of charm quarks:

Fig. 5.5 Leading-order
diagram contributing to the
ΔS = 2 transition
|K̄ 0〉 ↔ |K 0〉

ui
s

s̄d̄
ūj

d
Vis

VjsV ∗
jd

V ∗
is
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LΔS=2 ≈ (Vcs V ∗
cd)

2 Fcc (d̄Lγ μsL)(d̄LγμsL), with Fcc ≈ G2
F m2

c

π2
. (5.195)

However, gluonic corrections to this amplitude are not under perturbative control, so
that this operator can only provide an estimate of the mass difference [14].

Solution

The mixing of the two neutral kaons can be studied in a more general framework,
where the weak interaction determines the new mass eigenstates as a linear combi-
nation of K 0 and K̄ 0, namely:

|K 0
S,,L〉 = 1

√|p|2 + |q|2
(

p|K 0〉 ± q|K̄ 0〉) . (5.196)

These new states, now defined K -short and K -long, are the eigenvectors of the
full Hamiltonian. They are C P-eigenstates to the extent that |p/q| = 1, which is
for example the case in Eq. (5.192). Indeed, the effective Hamiltonian matrix of
Eq. (5.193) must have identical diagonal elements H̃11 = H̃22 = H̃d by C PT -
invariance. This fully determines the eigenvectors in terms of the off-diagonal ele-
ments as:

|K 0
S,L〉 =

√
H̃12|K 0〉 ±

√
H̃21|K̄ 0〉

√
|H̃12| + |H̃21|

≡ (1 + ε)|K 0〉 + (1 − ε)|K̄ 0〉
√
2(1 + |ε|2) , (5.197)

where the complex parameter ε defined by

1 − ε

1 + ε
≡
√
H̃21

H̃12

(5.198)

has been introduced. Assuming the more generic transformation property |K 0〉 →
eiδ|K̄ 0〉 and |K̄ 0〉 → e−iδ|K 0〉, invariance under C P of the Hamiltonian implies

H̃12 = 〈K̄ 0|H̃ |K 0
〉 = 〈K̄ 0|(C P)† H C P|K 0

〉 = e2iδ
〈
K 0|H |K̄ 0

〉

= e2iδH̃21. (5.199)

Hence, the off-diagonal elements of the Hamiltonian matrix of Eq. (5.193) must be
relatively real, and the states in Eq. (5.197) come out as eigenvectors of C P .

The off-diagonal elements receive contributions from both virtual transitions via
ΔS = 2 operators like the one depicted in Fig. 5.5 and by ΔS = 1 transitions via
|K̄ 0〉 → (2π)I → |K 0〉, see Eq. (5.191): an irreducible phase between the two,
which can be ultimately traced to the irreducible phase in the CKM matrix, can
thus make H̃12 and H̃21 not relatively real and turn K 0

S and K 0
L into an admixture of
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K1 and K2. With the phase-convention δ = 0, the parameter ε governs the amount
of K2 (K1) present in KS (KL). As discussed in Sect. 5.3, the fact that |ε| �= 0 is an
indirect manifestation that C P is broken, because the mass eigenstates are not pure
C P-eigenstates. Instead, direct violation of C P would manifest itself through inter-
fereing amplitudes sensitive to different combinations of the CKM elements. This is
for example the case of K 0

L → π+ π− e+ e− decays, where the relative orientation
between the decay planes eπ and ee of the charged pions and of the electron-positron
pair receives contributions from both C P-even and C P-odd amplitudes, thus offer-
ing the opportunity to measure C P-violation. This is experimentally the case, with
a measured asymmetry [9]

A = Neπ ·ee>0 − Neπ ·ee<0

Neπ ·ee>0 + Neπ ·ee<0
= (13.7 ± 1.5)%. (5.200)

The traditional C P-violation parameters for the neutral kaons are defined as

η+− ≡
〈
π+ π−|Hewk|K 0

L

〉

〈
π+ π−|Hewk|K 0

S

〉 = ε + ε′, η00 ≡
〈
π0 π0|Hewk|K 0

L

〉

〈
π0 π0|Hewk|K 0

S

〉 = ε − 2 ε′

(5.201)

The parameter ε′ controls the direct violation of C P . It can be related to the EWK
phase of the amplitude for K 0 transitions to two-pion states in I = 0 and I = 2
configurations, which can be proved to be identical if C P is conserved by using
unitarity and C PT invariance, see Ref. [11] for more details. Experimentally, η+−
can be measured by studying the time-dependent decay rate of neutral kaons into
π+π−. For example, from an initial K 0 beam, one has:

Γπ+ π−(τ ) ∼ e−ΓSτ + 2|η+−|e− ΓS+ΓL
2 τ cos(φ+− − Δm τ) + |η+−|2e−ΓLτ . (5.202)

Experimentally, one finds |η+−| = (2.232 ± 0.011) × 10−3 and a consistent value
for |η00| [9]. The real part of ε can be measured from the time-integrated right-to-
wrong sign ratio

AL = Γ (K 0
L → π− μ+ νμ) − Γ (K 0

L → π+ μ− ν̄μ)

Γ (K 0
L → π− μ+ νμ) + Γ (K 0

L → π+ μ− ν̄μ)
= 2Re ε, (5.203)

with an experimental result AL = (3.32 ± 0.06) × 10−3 [9]. The ε′ parameter can
be instead constrained by measuring a deviation from unity of the double ratio of
neutral-to-charged pion decay for K 0

L and K 0
S , see Eq. (5.201). The results from the

NA48 experiment at CERN gave a value of

∣∣∣∣
η00

η+−

∣∣∣∣ ≈ 1 − 6Re
ε′

ε
= (0.9950 ± 0.0007), (5.204)

thus giving a neat evidence of direct C P-violation through a non-zero value of ε′.
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Suggested Readings

The physics of the K 0/K̄ 0 system has been the object of an intensive theoretical and
experimental research work over several decades. There are lots of textbooks where
this topic can be studied in great details, see e.g. Ref. [8]. Chapter 7 of Ref. [11]
is certainly a good starter, since it provides a coincise overview of the underlying
theory and summarises the main experimental results. The reader is also addressed
to study in more details the experimental setup used by the NA48 experiment to
simultaneously measure the two-pion decays of both K 0

S and K 0
L .

Bando n. 1N/R3/SUB/2005

Problem 5.40 What is the K 0
S regeneration? How can it be explained?

Solution

When two beams of K 0 and K̄ 0 of the same momentum |p| propagate through
a thickness L of material, their phase at the exit has undergone a different shift
because of the different elastic-scattering amplitude. This can be understood by the
Optical theorem, which relates the forward scattering amplitude to the total cross
section. The latter is necessarily different for K 0 and K̄ 0: for example, the reaction
K̄ 0 p → π+ Λ is an allowed ΔS = 0 reaction, whereas the same is suppressed for
K 0, since ΔS = +1. For a wave propagating in matter with density N , the extra
phase taken up at the proper time τ because of elastic scattering with the nucleons is

|p|(n − 1) � = 2π N βγ τ

|p| f (0), (5.205)

where f (0) takes different values for K 0 and K̄ 0. In terms of the Hamiltonian, this
shift is equivalent to adding an extra momentum. Considering an eigenstate of the
free Hamiltonian of energy Ep and momentum p, the interaction with the medium
induces a shift in the momentum |p| → (1 + δn) |p|. In terms of the rest mass, this
is equivalent to a shift m → m (1 − δn). Hence, the mass matrix of Eq. (5.193) gets
modified to:

H̃ =
(

M − i Γ
2 − 2π N βγ

|p| f0 M12 − i Γ12
2

M12 − i Γ12
2 M − i Γ

2 − 2π N βγ

|p| f̄0

)

≡
(

a − ε1 b

b a − ε2

)

(5.206)
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The eigenvalues and eigenvectors of this matrix are given by:

λ1,2 = a ± b −
(

ε1 + ε2

2

)
+ O(εi ), |K 0 ′

1,2〉 ∝
(

λ1,2−a+ε2
b
1

)
≡
(±1 + 2r

1

)

with r = −ε2 − ε1

4 b
= π N βγ

|p|
f0 − f̄0

m1 − m2 − i
2 (Γ1 − Γ2)

. (5.207)

To first order in r , the new eigenvectors can be decomposed in terms of the C P-
eigenstates as:

|K 0 ′
1 〉 = |K 0

1 〉 + r |K 0
2 〉, |K 0 ′

2 〉 = −r |K 0
1 〉 + |K 0

2 〉. (5.208)

Hence, even starting from a pure K 0
2 beam, an amount of K 0

1 of order r can be regen-
erated.

Suggested Readings

The regeneration of the short-lived neutral kaon from a beam of pure K 0
2 passing

through an iron plate was first observed at the Bevatron in 1960 [33]. Interestingly,
there is another sources of collinear K 0

1 : diffractive production via K 0
2 p → K 0

1 p.
The purely regenerated and diffractive components could be separated from an analy-
sis of the angle between the incoming K 0

2 beam and the reconstructedπ+ π− momen-
tum, which is more strongly peaked at zero for coherent regeneration. See Chap.7
of Ref. [11] for more details.

Bando n. 1N/R3/SUB/2005

Problem 5.41 Consider the decays D0 → K̄ 0 π0 and D0 → K 0 π0.Draw theFeyn-
man diagrams of the two decays and estimate the ratio between the two decay ampli-
tudes.

Solution

The flavour-changing decay D0 → K̄ 0 π0 proceeds at parton-level through the
branchings c → s W + followed by W + → u d̄: the amplitude is therefore propor-
tional to V ∗

cs Vud . See Fig. 5.6 for a graphical representation of the decay amplitude.
The decay D0 → K 0 π0 requires instead the transitions c → d W + followed by
W + → u s̄: the amplitude is therefore proportional to V ∗

cd Vus . See Fig. 5.6 for a
graphical representation of the decay amplitude. The ratio between the two decay
widths can be then estimated to be:

Γ (D0 → K 0 π0)

Γ (D0 → K̄ 0 π0)
= |V ∗

cs Vud |2
|V ∗

cd Vus |2 = tan4 θC ≈ 2.6 × 10−3. (5.209)
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ū

c

u

ū

V ∗
cs

d̄

s

Vud
D0

π0

K̄0

ū

c

u

ū

V ∗
cd

s̄

d

Vus
D0

π0

K0

Fig. 5.6 Partonic diagrams describing the decays D0 → K̄ 0 π0 and D0 → K 0 π0

The decay D0 → K 0 π0 is thus doubly Cabibbo-suppressed.
Suggested Readings

The doubly Cabibbo-suppressed decay D0 → K + π−, which has its favoured-
counterpart D0 → K − π+ in analogy with the decay considered in this exercise,
has been measured at the BaBar experiment at PEP-II [34]. The measured value of
(0.303 ± 0.019)% is in agreement with the expectation from CKM.

Bando n. 1N/R3/SUB/2005

Problem 5.42 Why are the D0/D̄0 oscillations more difficult to be observed than
for B0/B̄0?

Solution

The time-dependent oscillation in the decays of K 0, D0, and B0 (and their charge-
conjugate states) is a consequence of mixing between the strong-eigenstates by the
electroweak interaction, as discussed in Problem 5.39. The mass difference between
the eigenstates Δm is determined by a box diagram that changes flavour by two
units, analogous to the one depicted in Fig. 5.5. For K 0, B0

s , and B0
d , the amplitude

is proportional to

(Vcs V ∗
cd)

2 ∼ λ2, (VtbV ∗
ts)

2 ∼ λ4, (VtbV ∗
td)

2 ∼ λ6, (5.210)

respectively, see Eq. (5.190). For the case of D0 mixing, the amplitude is instead
proportional to (Vcb V ∗

ub)
2 ∼ λ10, hence suppressed by a factor of λ4 ≈ 2 × 10−3

compared to e.g. the B0
d case. Therefore, the mass difference between the two D0-

eigenstates is expected to be small, hence oscillations slower and more difficult to
be observed.

Suggested Readings

The first evidence for D0/D̄0 oscillations in the decay channel D0 → K ∓ π± has
been established by the BaBar experiment at PEP-II [34].
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Bando n. 18211/2016

Problem 5.43 What is the unitarity triangle? Indicate at least one process that allows
to measure one of its angles and sides.

Discussion

Unitarity of the CKM matrix implies a number of relations between its elements.
Considering for example the matrix by columns, one has:

∑

i=u,c,t

Vi j V ∗
ik = δ jk, j, k ∈ {d, s, b}. (5.211)

The case j = k gives three independent equations, while for j �= k one has three
equations in the complex space, equivalent to six independent equations in real space.

Solution

Out of the three equations in Eq. (5.211), only one is of phenomenological interest
because the three terms are of comparable magnitude (of order λ3) and thus it can
be experimentally verified to good accuracy:

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 ⇔ 1 + Vud V ∗

ub

Vcd V ∗
cb

+ Vtd V ∗
tb

Vcd V ∗
cb

= 0. (5.212)

According to Eq. (5.212), the three terms at the left-hand side can be represented by
as many vectors in the complex plane that define the contour of a closed triangle,
also called the unitarity triangle. From Wolfenstein parametrisation of the CKM
matrix in Eq. (5.190), it follows that −Vud V ∗

ub/Vcd V ∗
cb = ρ + iη: the low vertices of

the unitarity triangle are therefore located in (0, 0) and (1, 0), and the upper one in
ρ + iη, see Fig. 5.7.

Starting from the upper vertex and moving clockwise, the three angles of the
triangle are conventionally denoted by α, β, and γ , respectively, so that:

Fig. 5.7 The unitarity
triangle in the complex
(ρ, η) plane (from Ref. [9])

1
3

2
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α = arg

(
− Vtd V ∗

tb

Vud V ∗
ub

)
, β = arg

(
− Vcd V ∗

cb

Vtd V ∗
tb

)
, γ = arg

(
− Vud V ∗

ub

Vcd V ∗
cb

)
. (5.213)

Since these angles are related to an irreducible phase between the CKM elements,
they must be related to C P-violating observables.

The angle β can be measured from the time-dependent oscillations in the decay
B0(t) → J/Ψ K 0

S , where B0(t) is an admixture of B0 and B̄0 in analogywith the K 0

system. Indeed, the time-dependent amplitude squared for this decay is proportional
to:

|〈J/Ψ K 0
S |H |B0(t)

〉|2 ∝ e−ΓB |t | [1 − sin 2(β + φwk) sin(Δm B t)] . (5.214)

The mechanism responsible for Eq. (5.214) can be traced back to the interference
between two amplitudes: the first proceeds through the tree-level branching of the B0

component: b̄ → c̄ W + followed by W + → c s̄, which is proportional to Vcd V ∗
cb; the

second amplitude involves a transition B0 → B̄0 by means of a ΔB = 2 effective
operator proportional to (Vtd V ∗

tb)
2. The relative phase between the two is thus related

to the angle β and gives rise to time-dependent oscillations of frequency Δm B . The
current world average is sin 2β = 0.691 ± 0.017 [9].

The angle α can be measured by combining measurements of the time-dependent
oscillations in the decays B0(t) → π π, ρ π, ρ ρ. Indeed, such decays can proceed
both through a tree-level transition b̄ → ū W +, proportional to Vud V ∗

ub, and through
the transition B0 → B̄0, proportional to (Vtd V ∗

tb)
2, followed by b → u W −, which

is proportional to VubV ∗
du : the total phase is thus β + γ = π − α. The current world

average is α = 87.6+3.5
−3.3

◦
[9].

Finally, the angle γ can be measured from the interference between the CKM-
favoured B+ → D̄0 K + and the CKM-disfavoured B+ → D0 K + amplitudes in
the resonant decays B+ → K 0

S π+ π− K +. The current world average is γ =
73.2+6.3

−7.0
◦
[9].

The two upper sides of the unitarity triangle have length proportional to |Vud V ∗
ub|

and |Vtd V ∗
tb|. The former can be constrained by themeasurement of Vub from the sup-

pressed semileptonic decays B → Xu � ν. The latter is instead related to the B0/B̄0

mass mixing through a calculable FCNC process, and can thus be measured from
the oscillation frequency in B0

d and B0
s decays.

Suggested Readings

For an overview of CKM-related measurements, the reader is addressed to Chap.15
of Ref. [11].

Bando n. 18211/2016

Problem 5.44 Consider the two leptonic decays of the B mesons:
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B+ → μ+ νμ B0 → μ+μ− (5.215)

Do you expect the two processes to have a similar branching ratio? If not, which one
do you expect to be the largest?

Solution

The charged-current decay width for B+ → μ+ νμ is analogous to the π+ → μ+ νμ

case of Eq. (5.50), modulo the replacement |Vud | → |Vub| and fπ+ → fB+ , with
fB+ ≈ 190 MeV [9]. Since the CKM element for b → u W − is small (Vub ≈
4.5 × 10−3), and since the decay is chirality-suppressed, the branching ratio is tiny
compared to the semileptonic decay B → D � ν�. By using Eq. (5.50) with the appro-
priate replacements, one gets:

Γ (B+ → μ+ νμ) ≈ 3.5 × 10−6 s−1, (5.216)

Given that the B+ lifetime is τB+ = 1.6 ps, we get an expected branching ratio of
about 5 × 10−7, consistent with the current best upper limit of 1.0 × 10−6 s at 90%
CL [9]. Presently, out of the three leptonic decays of the B+ mesons, only the decay
B+ → τ+ ντ has been observed at the Υ (4S) factories.

The decay B0 → μ+ μ− is a FCNC process with |ΔB| = 1, hence it is loop-
suppressed, although more CKM-favourable compared to the leptonic decay, since
the amplitude is proportional to VtbV ∗

ts , i.e. it involves a transition from the third to
the second generation. The expected SM branching ratio are however smaller than
for the leptonic decay by at least two orders of magnitude, namely

BR(B0
s → μ+ μ−) = (3.7 ± 0.2) × 10−9

BR(B0
d → μ+ μ−) = (1.1 ± 0.1) × 10−10.

(5.217)

These two decays have been observed at the LHCwith a significance in excess of 6σ
and 3σ , respectively. The measurements are in agreement with the SM expectation.

Suggested Readings

See the PDG review [9] dedicated to leptonic decays of charged pseudo-scalar
mesons. The observation of the rare B0

d,s → μ+ μ− decays is documented in
Ref. [35].

Bando n. 18211/2016

Problem 5.45 Discuss whether the partonic process b → s γ can be represented by
a tree-level diagram in the SM.

Solution
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The partonic transition b → s γ is a FCNC process, hence in the SM it cannot occur
at tree-level. It is generated at the one-loop level via a Penguin-diagram similar to
the one shown in Fig. 5.4. Experimentally, this amplitude can be studied from e.g.
the decay B+ → K ∗+ γ .

Suggested Readings

The reader is addressed to Chap.11 of Ref. [11] for some more examples on this
subject.

Bando n. 18211/2016

Problem 5.46 In order to study C P violation in the B meson system, asymmetric
e+ e− colliders with centre-of-mass. energy equal to the Υ (4S) mass are generally
used. Motivate this particular choice.

Solution

The Υ (4S) is an excited bottomium state. It has a mass of 10.579 GeV and decays
mostly to B+ B− and B0 B̄0 with nearly equal branching ratio. Since it has J PC =
1−−, it can be produced via s-channel e+ e− scattering. The Q-value for both decays
is small, giving:

Q = mΥ − 2m B ≈ 20 MeV ⇒ β∗γ ∗ ≈
√

TB

2m B
=
√

Q

m B
≈ 0.06. (5.218)

Given that the B mesons have cτ of about 450 µm, the mean distance of flight in
the laboratory for Υ (4S) produced at rest is β∗γ ∗cτ ≈ 30 µm, which is at the limit
for the experimental detection of the B decay vertex. The latter is necessary to study
C P violation by studying the time-dependent decay probability of the physical B0

mesons as a function of its time of flight.
In order to overcome this limitation, asymmetric e+ e− colliders (B-factories)

have been built at SLAC and KEK. By colliding beams of different energies E1 and
E2, but such that

√
2E1E2 = mΥ , the averageβγ factor of B mesons in the laboratory

frame is enhanced. For example, by using two beams of energies E1 = 9 GeV and
E2 = 3 GeV, the average γ factor of the B mesons in the laboratory frame is:

〈
γ
〉 = γ ∗

√
|E1 − E2|2

m2
Υ

+ 1 = 1.15 ⇒ 〈
βγ
〉 ≈ 0.57, (5.219)

corresponding to an average decay distance of about 250 µm.



342 5 Subnuclear Physics

Suggested Readings

The reader is addressed to Chap.15 of Ref. [11] for more details on this subject.

Bando n. 1N/R3/SUB/2005

Problem 5.47 The decays μ → e γ and τ → μγ violate the conservation of the
lepton number.

• Draw at least one diagram that can explain such decays.
• Describe which are the irreducible backgrounds.

Discussion

In the SM with Dirac-type neutrinos, the lepton number L and the individual lep-
ton numbers Li , with i = e, μ, τ , are “accidental” global symmetries of the SM
Lagrangian. Both can be broken in minimal extensions of the SM. Indeed, if the
PMNS matrix is non-diagonal, as implied by the evidence of their oscillation, indi-
vidual lepton numbers can be violated. However, the rate of decays that violate the
individual lepton numbers are negligibly small due to the heaviness of the right-
handed neutrino mass. A diagram like the one shown in Fig. 5.8, where right-handed
neutrinos mediate the transition between lepton families, contribute by an effective
operator:

Lμ→e γ ≈ A (μ̄σμνe)Fμν, with A < e
α

π

mμ

m2
W

mν

mW
. (5.220)

The smallness of the observed neutrino mass, mν � 1 eV, which is due to the large-
ness of the right-handed neutrino mass M R , makes this amplitude totally negligible.
Indeed, the branching ratio corresponding to this amplitude is:

BR(μ → e γ ) = 3α

32π

∣∣∣∣∣

∑

i

U ∗
μi

(
m2

νi

m2
W

)

Uei

∣∣∣∣∣

2

� 10−50, (5.221)

Fig. 5.8 A diagram
contributing to the μ → e γ

transition. The crosses
denote appropriate mass
insertions

μ−

γ

e−N

W− W−

νeνμ
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where Ui j are the appropriate elements of the PMNS matrix responsible for flavour
mixing of neutrinos. In extensions of the SM, like the Minimal Supersymmetric
Standard Model (MSSM), the amplitude receives additional, and potentially much
larger, contributions from diagrams where supersymmetric particles are exchanged
in the triangle: the amplitude is no longer suppressed by the large mass scale M R ,
rather by the naturally smaller scale of supersymmetry breaking [36], overall giving
branching ratios of the order of 10−15 ÷ 10−14.

Solution

A diagram contributing to the μ → e γ transition is shown in Fig. 5.8. An analo-
gous diagram holds for τ → μγ . Here, the transition is mediated by a right-handed
neutrino.

Muon decays via μ± → e± γ can be searched by stopping muon beams in mat-
ter and studying the kinematics of the electron and photon produced in their decay.
Besides being back-to-back, in a two-body decay the electron and photon energies
are fixed, while in the ordinary three-body decay (Michel decay), the same electron
energy is only taken at the endpoint of the spectrum. In order to tag a signal event,
the electron and photon are required to be in coincidence as to reduce the main back-
ground arising from the accidental pileup of a photon produced in a different muon
decay μ → e νμ νe + γ (radiative decays) or from the interaction of the electron
with the material upstream of the calorimeter. The second source of background
is represented by a pure radiative decay, where the photon and electron are instead
produced in coincidence. The key experimental challenges are therefore the time res-
olution for measuring the coincidence and the energy/momentum resolution on both
electrons and photons to reduce the contamination from radiative decays. The MEG
experiment at PSI has put the most stringent upper limit on this decay, corresponding
to BR(μ+ → e+ γ ) < 4.2 × 10−13 at 90% CL [37].

Tau decays via τ± → μ± γ are best searched by producing τ leptons in high-
energy collisions. The most stringent limits are obtained in e+e− colliders, in par-
ticular by the BaBar and Belle experiments [38, 39], where τ leptons are produced
in pairs. The main background arises from standard τ decays τ → μνμ ντ where
a photon accidentally overlaps with the muon. The tightest upper bound has been
measured by the BaBar experiment at PEP-II, giving BR(τ → μγ ) < 4.4 × 10−8

at 90% CL [38].

Suggested Readings

Reference [14] provides an elegant and coincise theoretical overview on the subject.
The most recent results from the MEG experiment at PSI have been published in
Ref. [37]. See Ref. [38, 39] for the details on searches for the lepton flavour violating
decay τ → μγ .
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5.4 Higgs Boson

By adding a kinetic Lagrangian for Φ to the right-hand side of Eq. (5.39) , with the
usual ∂μ ↔ Dμ replacement, the Higgs field propagates and interacts with the gauge
fields. More generally, the scalar sector can be supplemented with a gauge-invariant
potential V (Φ,Φ∗). In order for the theory to be renormalizable, no operators with
dimension d > 4 should be present at tree-level, which singles-out a limited number
of possible terms in V (Φ,Φ∗). The most general scalar Lagrangian is then given by:

LS = (DμΦ†)(DμΦ) − μ2Φ†Φ − λ(Φ†Φ)2, (5.222)

where λ needs to be positive for the potential to be bounded from below and μ2 is a
mass term for the Φ field.

The ground state of the theory (vacuum) is defined as the state where the energy
density is at a minimum. The minimum of the scalar potential in Eq. (5.222) depends
on the sign of μ2. If μ2 > 0, then the ground state |0〉 satisfies: 〈0|Φ|0〉 = 0. On the
contrary, for negative values of μ2, the vacuum state on which the expectation value
of V (Φ,Φ∗) is at a minimum is away from zero. By defining the vacuum expectation
value of the Higgs doublet as

v ≡
(−μ2

λ

)1/2

, (5.223)

all states on which the expectation value of Φ is related to (0, v/
√
2) by a rotation

of SU (2)L , sit on a minimum of the potential The ground state is clearly no longer
invariant under an arbitrary transformation of the SU (2)L × U (1)Y sub-group: this
symmetry of the Lagrangian has been spontaneously broken. The neutral component
of the doublet is chosen to develop v �= 0, so that the electric charge can be conserved.
By virtue of the Brout-Englert-Higgs (BEH) mechanism [40, 41], all generators of
SU (2)L × U (1)Y but the combination T3 + Y/2 are broken, and three Goldstone
bosons appear in the spectrum. It is only in a gauge theory that these scalar bosons
get reabsorbed by the gauge bosons as their longitudinal degrees of freedom. Thus,
the BEH mechanism can give mass to three of the gauge bosons (W ±, Z0), while
the fourth (A) remains massless. It still remains to generate masses for the fermions.
This happens by virtue of the Yukawa interactions in Eq. (5.43): by replacingΦ with
(0, 1/

√
2(v + H)), a Dirac mass term mi f̄ f , with

mi ≡ λi v√
2

, (5.224)

is generated for a fermion of type i . Expanding the Higgs doublet around the mini-
mum, Eq. (5.222) becomes
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LH = 1

2
(∂μ H)(∂μ H) − λ v2H 2 − λ v H 3 − λ

4
H 4, (5.225)

which implies that the physical Higgs boson has a mass m H = √
2 λ v, and a cubic

and quartic self–interaction with a vertex

g3H = 3
m2

H

v
and g4H = 3

m2
H

v2
. (5.226)

The μ and λ parameters of the bare Lagrangian can be traded for the Higgs boson
mass and the vacuum expectation value (v). The latter can be put in relation with the
W ± boson mass and with an other experimental observable, the Fermi constant G F ,
giving:

v = 1

(
√
2 G F )1/2

≈ 246 GeV. (5.227)

The only unknown parameter of the Higgs sector is therefore the mass of the physical
Higgs boson. The Yukawa couplings in Eq. (5.42) determine the strength of the
interaction between the Higgs boson and the fermions:

gH f f = m f

v
≡ (

√
2 G F )1/2 m f , (5.228)

while the couplings of the Higgs boson to gauge vectors can be extracted from the
covariant derivative:

gH V V = −2
m2

V

v
≡ −2(

√
2 G F )1/2 m2

V , gH H V V = −2
m2

V

v2
≡ 2

√
2 G F m2

V .

(5.229)

Equations (5.228) and (5.229) show that the Higgs boson couples to the SM particles
with strength proportional to the particle mass for fermions, and to the mass squared
for gauge bosons. The Higgs boson in the SM is a definite C P = 1 eigenstate, and
is assigned the quantum numbers J C P = 0++.

Problems

Bando n. 1N/R3/SUB/2005

Problem 5.48 Order by decreasing cross section value the following reactions.

1. At a hadron collider:

• inclusive Z0 production;
• top quark pair-production;
• inclusive Higgs boson production;
• inclusive b quark production;
• elastic pp scattering;
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Fig. 5.9 The theoretical
proton-(anti)proton cross
sections as a function of

√
s

for total scattering, inclusive
b quark production, W ± and
Z0 boson production, t
quark production, and
inclusive Higgs boson
production (from Ref. [42])
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2. At the LHC, the following Higgs production mechanisms:

• q q̄, g g → H t t̄
• q q̄ → H Z0

• g g → H
• q q → H q q
• q q̄, g g → H b b̄

Solution

The theoretical proton-(anti)proton cross section for the processes listed in the exer-
cise is shown in Fig. 5.9 for different values of

√
s. The theoretical cross section for

Higgs boson production, broken up by different production mechanism, is shown in
Fig. 5.10.

Discussion

As shown by Fig. 5.9, the total proton-proton cross section varies slowly with
√

s.
This is in agreement with the Froissart limit, which asserts that the total cross section
must be bounded from above by some constant multiplied by ln2 s [44]. The Higgs
boson production cross sections increase with

√
s, although with different slopes. In



5.4 Higgs Boson 347

Fig. 5.10 Standard Model
Higgs boson production
cross sections in
proton-proton collisions as a
function of the
centre-of-mass energy (from
Ref. [43])

s  ]VeT[ 
6 7 8 9 10 11 12 13 14 15

 H
+

X
) 

[p
b]

   
 

→
(p

p 
σ

2−10

1−10

1

10

210 M(H)= 125 GeV

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
6

 H (N3LO QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→pp 

 ZH (NNLO QCD + NLO EW)

→pp 

 ttH (NLO QCD + NLO EW)

→pp 

 bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

→pp 

 tH (NLO QCD, t-ch + s-ch)

→pp 

particular, the steeper increase of the vector-boson fusion (VBF) cross section is a
reminiscence of the longitudinal boson scattering amplitude growing with energy:
the partonic cross section increases like σ̂ ∝ ln ŝ, see e.g. Ref. [20] for a review
on this subject. For example, for the case q q ′ → H q q ′ in weak-boson fusion, an
approximate expression for the total cross section is given by [45, 46]:

σ̂ = 1

16m2
W

(
α

sin2 θW

)3 [(
1 + m2

H

ŝ

)
ln

ŝ

m2
H

− 2 + 2
m2

H

ŝ

]
(5.230)

For t t̄ H , the fast increasewith energy ismostly due to the larger phase-space available
for producing three massive particles.

Bando n. 1N/R3/SUB/2005

Problem 5.49 What is the ratio BRb/BRτ for a Higgs boson mass of 125 GeV?

Discussion

TheBorn-level decaywidth of the Higgs boson to a fermion-antifermion pair is given
by the general formula:

ΓBorn(H → f f̄ ) = G F NC

4
√
2π

m H m2
f

(

1 − 4m2
f

m2
H

) 3
2

, (5.231)

where NC is the number of colours, see e.g. Ref. [20] for a compendium of decay for-
mulas. For quarks, the higher-order corrections are important and can be re-asborbed,
to a large extent, inside the running quark mass mq . The latter is defined by a RGE:
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dm(μ2)

d lnμ2
= −γm(αs) m ⇒ m(μ2) = m(μ2

0) exp

[

−
∫ αs (μ

2)

αs (μ
2
0)

dαs
γm(αs)

β(αs)

]

,

(5.232)

where γm is called anomalous dimension, which, in a mass-independent renormali-
sation scheme, can be expanded as a series in αs :

γm(αs) = αs γ0 + α2
s γ1 + · · · , with γ0 = 3CF

4π
= 1

π
, (5.233)

see e.g. Chap. 3.4 ofRef. [18]. Sinceγ0 > 0, the runningmass is a decreasing function
of μ2. With the introduction of the running mass, the decay width becomes:

Γ (H → q q̄) = 3G F

4
√
2π

m H m2
q(m H )

[
1 + Δqq + Δ2

H

]
, (5.234)

where Δqq and ΔH are additional radiative corrections of O(αs).

Solution

For bottom quarks, the running mass mb(m2
H ) at the Higgs boson mass scale is a

factor of about 0.85 smaller compared to the pole mass mb(m2
b), see e.g. Fig. 2.3 of

Ref. [19], whereas the running of the τ lepton mass between the pole mass and m H

is negligible. Given Eq. (5.231), and using a value of 4.18 GeV for the b quark pole
mass, we should therefore expected a ratio of:

Γ (H → τ+ τ−)

Γ (H → b b̄)
= 1

NC

m2
τ

m2
b(m H )

≈ 1

3

(
1.7

4.18 · 0.85
)2

≈ 0.08. (5.235)

A complete calculation [43] of the partial widths, which includes higher-order correc-
tions to both decays, yields ratio of 0.108, in fair agreement with the above estimate.

Suggested Readings

For a comprehensive review of the Higgs boson physics, the reader is addressed to
Ref. [20].

Bando n. 1N/R3/SUB/2005

Problem 5.50 What is the BR and what the main background for H → γ γ ?
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Discussion

The Higgs boson is a gauge singlet. Since the spontaneous breaking of the SU (2)L ×
U (1)Y symmetry leaves unbroken both U (1)em and SU (3)C , the Higgs boson is
neutral under the electromagnetic and strong interactions. As such, it only couples
to the photon and gluons via loop-induced operators of dimension five:

LHγ γ = cγ

H

v
Fμν Fμν, LHgg = cg

H

v
Ga

μνGa μν, (5.236)

where v is the vacuum-expectation-value of the Higgs field, see Eq. (5.227). The
coupling to photons is mostly induced by loops of t quarks and of W boson. The
coupling to gluons is instead largely dominated by top quark loops. The Lorentz
structure of the top-mediated loop is identical between the Hgg and Hγ γ vertex,
differing only on the coupling strength (gs → e) and on the colour algebra. In the
limit mt → ∞, the effective operator generated by top quarks gives:

cγ = e2

18π2
, cg = g2

s

48π2
, (5.237)

see e.g. Ref. [47]. For the photon case, the leading-order amplitude receives contri-
butions of comparable size from two interfering diagrams. The resulting decay width
is given by:

Γ (H → γ γ ) = G F α2 m3
H

128
√
2π3

∣∣∣∣∣
NC

(
2

3

)2

At

(
m2

H

4m2
t

)
+ AW

(
m2

H

4m2
W

)∣∣∣∣∣

2

,

with Ai (τ ) =
{

+2
[
τ + (τ − 1)arcsin2

√
τ
]
τ−2 t

− [2τ 2 + 3τ + 3(2τ − 1)arcsin2
√

τ
]
τ−2 W

(5.238)

Numerically, AW is a factor of about 4.6 larger. They interfere destructively.

Solution

The H → γ γ decay is loop-mediated and it involves weak couplings. It should
be therefore suppressed by rougly a factor of (α/αs)

2 ≈ 4 × 10−3 compared to
the analogous H → g g decay. However, the H → γ γ amplitude receives large
contributions from W loops, as discussed above, increasing the decay width by a
factor of about 12. Overall, the branching ratio into two photons turns out to be
BR(H → γ γ ) ≈ 2.27 × 10−3 at m H = 125 GeV [43], which should be compared
to a branching ratio of BR(H → g g) ≈ 8.19 × 10−2.

The dominant experimental backgrounds in proton-proton collisions arise from
prompt and non-prompt di-photon production. Prompt photons can be either pro-
duced from hard parton interaction or from the fragmentation of final state partons.
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Non-prompt and high-pT isolated photons mostly arise from π0 → γ γ decays.

Suggested Readings

The basic formulas for the H → γ γ decay amplitude can be found in Ref. [20]. The
experimental measurement of the H → γ γ cross section at the LHC is documented
in Refs. [48, 49].

Problem 5.51 At a hadron collider, the Higgs boson cross section can only be mea-
sured in exclusive production and decay channels in the combination σi · BR j . These
measurements can be related to their SMexpectations via coupling strengthmodifiers
κi , such that σi = κ2

i σ SM
i and Γ j = κ2

j Γ SM
j , and by an unknown branching ratio into

exotic particles, BRBSM. Show that the κi modifiers extracted from a comprehensive
set of cross section measurements are bounded from above, but not from above.

Solution

In terms of the strength modifiers, the generic cross section for exclusive production
and decay channels is given by:

σ(i → H → j) ≡ (σi · BR j ) = σi Γ j

ΓH
=
[

σ SM
i Γ SM

j

Γ SM
H

]
κ2

i κ2
j∑

j κ2
j BR

SM
j

(1 − BRBSM)

(5.239)

From Eq. (5.239), it is easy to verify that a simultaneous measurements of multiple
σi · BR j cannot constrain the κi into a closed confidence level. Indeed, a simultaneous
re-scaling

κi → λκi and BRBSM → BRBSM + (λ2 − 1)

λ2
, (5.240)

with λ > 0, leaves all of the σi · BR j unchanged. Hence, a likelihood function of
the σi · BR j measurements will admit a flat direction in the (κi ,BRBSM) space.
Conversely, any of σi · BR j measurements yields a lower bound on κi and κ j . Indeed:

(σi · BR j ) = (σi · BR j )
SM

κ2
i κ2

j∑
j κ2

j BR
SM
j

(1 − BRBSM)

≤ (σi · BR j )
SM

κ2
i κ2

j

κ2
j BR

SM
j

= σ SM
i κ2

i ⇒ κi ≥
√

(σi · BR j )

σ SM
i

. (5.241)
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Discussion

If the total width ΓH can be constrained from above (for example, from the invariant
mass distribution of the Higgs decay products, or from off-shell interference with the
background), both the strength modifiers and the exotic branching ratio are clearly
also limited from above. Alternatively, if one admits that the exotic decays consist
of invisible particles only, which can be detected through transverse momentum
imbalance, then an additional measurement is possible, namely σi · BRBSM = σ SM

i ·
(κ2

i BRBSM), which removes the degeneracy of Eq. (5.240). However, is the exotic
decays can give rise to undetectable events, then the degeneracy remains.

If one wishes to set a bounded confidence interval on the strength modifiers in
the lack of a direct measurement of the total width, additional model-dependent
assumptions are needed. The simplest one is clearly to assume no exotic decays, i.e.
BRBSM = 0. In this case, the degeneracy of Eq. (5.240) is lifted. Alternatively, one
can still allow for BRBSM ≥ 0, but assume that at least one of the κi is limited from
above, so that the flat direction is again removed (for example, a physics-motivated
case is provided by the assumption κZ ,W ≤ 1).

Suggested Readings

For more details on the Higgs coupling extraction from LHC data, the reader is
addressed to Ref. [50].

Problem 5.52 Show that, differently from what happens at a hadron collider, at an
e+ e− collider operating above the Z H threshold, the Higgs boson width can be
measured in a model-independent fashion from the combination of two cross section
measurements.

Solution

At a lepton collider with
√

s > m H + m Z , the inclusiveHiggsstrahlung cross section
σZ H can be measured by studying the recoil mass distribution of the Z0:

pe+ + pe− = pZ + pH ⇒ s + m2
Z − 2pZ (pe+ + pe−) ≡ m2

recoil = m2
H .

(5.242)

Notice that this is not the case for a hadron collider, where the kinematics of the initial
state is not known a priori. If the cross section σZ H · BRZ can be also measured, the
total width can be measured as:

(σZ H · BRZ ) = σZ H
ΓZ

ΓH
= σZ H

Γ SM
Z · σZ H

σ SM
Z H ΓH

⇒ ΓH = (σZ H )2

(σZ H · BRZ )

Γ SM
Z

σ SM
Z H

.

(5.243)
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Here, we have used the fact that σZ H ∼ ΓZ H by first principles, so that we can
use a particular model (for example, the SM), to get the coefficient of propor-
tionality. Hence, the total width can be measured with the same precision as
(σZ H )2/(σZ H · BRZ ).

Discussion

Notice that the key point here is to measure a channel where the same couplings
are probed at the production and at the decay level, so that one can relate Γi to σi

without additional unknown couplings. The same argument can be therefore applied
to e.g. the VBF production channel W ∗ W ∗ → H , followed by H → W W ∗. In this
latter case, the inclusive cross section σW W H proves more difficult to be measured
regardless of the Higgs decay channel because of the final-state neutrinos. However,
one can still profit from multiple measurements in the Higgsstrahlung channel and
derive σW W H from a suitable combination of them.

Suggested Readings

There is a growing literature about the potentialities of future lepton colliders on
the Higgs boson physics, see e.g. Ref. [51] for a future circular collider (FCC).
A summary of expected performances for the various options (CLIC, ILC, CEPC,
TLEP) can be found in Refs. [52, 53].

Bando n. 18211/2016

Problem 5.53 Which prospects would a muon collider offer and what are the main
technological challenges for its realisation?

Solution

A muon collider operating at a centre-of-mass energy in excess of 100 GeV would
offer the possibility of direct s-channel Higgs production, a reaction with a totally
negligible cross section at a conventional e+e− colliders, but becomes significant for
μ-fusion. Indeed, for unpolarised muon beams the cross section at the Higgs peak is
given by:

σ(s = m2
H ) = 16π

m2
H

1

(2s1 + 1)(2s2 + 1)
BRμ ≈

≈ 4π

(125)2
· 2 × 10−4 · 0.389 mbarn ≈ 70 pb. (5.244)

A scan over the muon beam energy would allow to measure directly the Higgs boson
width ΓH . In a BSM perspective, a fine-step energy scan could allow to detect the
presence of additional neutral resonances with mass splitting of order of the SM
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width. Given that synchrotron radiation is not a problem for muon beams of order
100 GeV, see Eq. (3.95), an appealing aspect of muon collider is the contained
accelerator size: for a beam energy E = 60 GeV, a radius R = 100 m would be
sufficient for a magnetic field B ∼ 2 T, see Eq. (3.45).

The main challenges posed by muon colliders are the luminosity and the energy
spread of the beam. The luminosity target requires to overcome the problem of gener-
ating and collecting high intensity muon beams (> 1012 muons/bunch) with reduced
emittance. The finite muon lifetime sets constraints on the accelerating stage and
provides a beam lifetime of order 1 msec. In order for a muon collider to serve as
Higgs factory, the beam energy needs to be calibrated to better than 10−4, and the
beam spread needs also to be of the same level to maintain the largest possible lumi-
nosity.

Suggested Readings

For an overview on the subject, the reader can start from the PDG review [9] and
references therein.

Bando n. 18211/2016

Problem 5.54 What aspects of a detector are crucial for a precision measurement
of the Higgs boson mass?

Solution

The ATLAS and CMS combined measurement of the Higgs boson mass is mostly
determined by the measurements in the H → γ γ and H → 4� channels, each con-
tributing by a similar amount to the final accuracy.

In the H → γ γ channel, the mass resolution depends on the energy and angular
resolution of the two photons, see Problem 5.55. The angular resolution arises from
the finite size of the calorimetric cells and from uncertainty on the vertex position
in the presence of multiple pile-up events. In this respect, a fine granularity of the
calorimeter, together with an efficient vertex identification capability, are of key
importance. The energy resolution at Eγ ∼ 60 GeV receives large contributions also
from the noise and uniform terms: the electromagnetic calorimeters thus require good
energy resolution, large gains, and precise calibration.

Among the H → 4� channels, the H → 4μ one provides the smallest mass res-
olution. The muon momentum scale can be calibrated to high accuracy by using
standard candles. The main limitation comes from the limited statistics given that
BR(H → 4μ) = 3.2 × 10−5 [43], thus requiring the highest possible acceptance.

The result from the Run 1 of the LHC is m H = 125.09 ± 0.24 GeV [54]. The
relative uncertainty of 0.2% is still statistically limited.

http://dx.doi.org/10.1007/978-3-319-70494-4_3
http://dx.doi.org/10.1007/978-3-319-70494-4_3
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Suggested Readings

See Ref. [54] for a discussion on the measurement of the Higgs boson mass at the
LHC.

Bando n. 13705/2010

Problem 5.55 One of the possible channels for detecting a light Higgs boson H
at the LHC is the rare decay H → γ γ . Assume a mass m H = 120 GeV and a
longitudinal momentum along the beam axis |p| = 200 GeV. Compute the range of
photon energies in the laboratory frame and the minimum opening angle between
the two photons. In the case of equally energetic photons, compute the di-photon
mass resolution by using an electromagnetic calorimeter with energy resolution of
3%/

√
E and angular resolution of 5 mrad.

Solution

The photon energy in the centre-of-mass frame is E∗ = m H/2 = 60 GeV. The γ

and β factors of the boost to the laboratory frame are given respectively by:

γ =
√

1 +
( |p|

m H

)2

= 1.94, β =
√

1 − 1

γ 2
= 0.857. (5.245)

The range of photon energy in the laboratory is given by Eq. (1.109):

E1,2 ∈ E∗
[
γ −

√
γ 2 − 1, γ +

√
γ 2 − 1

]
≈ [16.6, 217] GeV. (5.246)

The minimum opening angle corresponds to an emission at a polar angle θ∗ = π/2
in the centre-of-mass frame, which gives the same energy and polar angle in the
laboratory to both photons, see Problem 1.12. By using Eq. (1.59), we obtain a
minimum opening angle:

Δθ = acos
(
2β2 − 1

) = 1.08 rad = 61.9◦ (5.247)

The condition of identical photon energies in the laboratory frame implies that the
opening angle between the two photons is given by Eq. (5.247). Indeed:

E1 = E2 ⇔ E∗(1 + β cos θ∗) = E∗(1 − β cos θ∗) ⇒ θ∗ = π/2 (5.248)

From Eq. (5.248), the photon energy corresponding to an emission at an angle θ∗ =
π/2 is E1 = E2 = E∗. The invariant mass of the photon pair is given by:

mγ γ = √2 E1 E2 (1 − cosΔθ) = 2
√

E1 E2 sin
Δθ

2
(5.249)

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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By using the linear error propagation of Eq. (4.73), we estimate the relative uncer-
tainty δmγ γ /mγ γ on the photon-pair mass as:

δmγ γ

mγ γ
=
(
1

2

δE1

E1

)
⊕
(
1

2

δE2

E2

)
⊕
(

δ sin(Δθ
2 )

sin(Δθ
2 )

)

=
(

1√
2

σE∗
E∗
)

⊕
(

δ(Δθ)

2 tan(Δθ
2 )

)

=
(

1√
2

σE∗
E∗
)

⊕
(

σθ1 ⊕ σθ2

2 tan(Δθ
2 )

)

=
[
1

2

(
0.03√
60

)2
+ 2 · (5 × 10−3)2

4 · tan2 0.54

] 1
2

= 0.65%

(5.250)

Notice that the angular measurement gives the dominant contribution to the mass
uncertainty (0.59%), while the energy measurement contributes by 0.27%.

Discussion

The angular resolution in the di-photon mass arises from the finite size of the
calorimetric cells and from uncertainty on the vertex position in the presence of
multiple pile-up events. Besides, at the LHC experiments the energy resolution at
E ∼ 60GeV receives non-negligible contributions from the noise and uniform terms,
see Problem 2.33, so one should consider the 3%/

√
E uncertainty as a lower bound.

The combined LHC Run 1 measurement of the Higgs boson mass is mostly deter-
mined by the measurements in the H → γ γ and H → 4� channels, each contribut-
ing by a similar amount to the final accuracy.

Suggested Readings

See Ref. [54] for a discussion on the measurement of the Higgs boson mass at the
LHC.
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